Патенты автора Горелкин Петр Владимирович (RU)

Изобретение относится к полупроводниковым приборам, в частности к полупроводниковым сенсорам электрического потенциала, позволяющим проводить измерения с высоким пространственным разрешением на поверхности твердых тел и жидкостей, а также в объеме жидкостей, в том числе содержащихся внутри живых организмов и других биологических структур. Наноразмерный сенсор электрического потенциала на полевом эффекте представляет собой кварцевую или стеклянную иглообразную трубку, содержащую два продольных канала и сужающуюся на одном из концов до диаметра от 20 до 500 нм. На сужающемся конце трубки, представляющем собой плоскую площадку, перпендикулярную к оси трубки, размещен чувствительный элемент, выполненный в виде нанесенных последовательно слоя полупроводникового материала и защитного диэлектрического слоя, химически инертного к исследуемой среде. К полупроводниковому материалу присоединены два измерительных электрода, которые выполнены из слоя углерода, нанесенного на внутренних стенках продольных каналов трубки, гальванически изолированы друг от друга диэлектрической стенкой и подключены к внешнему измерителю электрического сопротивления. Изобретение обеспечивает увеличение стабильности характеристик, химической инертности и чувствительности сенсора за счет формирования транзисторной структуры измерения электрического потенциала на полевом эффекте. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области биохимии и биофизики. Устройство для тестирования эффективности биологически активных веществ на клетках содержит блок локальной контролируемой подачи биологически активного вещества, включающий нанокапилляр, блок позиционирования нанокапилляра, блок сканирования поверхности клеток, блок для измерения реакции клеток на введенное биологически активное вещество, и блок для измерения и/или осуществления деформации клеток. Обеспечивается повышение достоверности определения эффективности биологически активных веществ по отношению к механочувствительным клеткам. 1 з.п. ф-лы, 14 ил.

Использование: для приготовления раствора для инъекций, используемого при лечении онкологических заболеваний методом магнитной гипертермии и способу ее получения. Сущность изобретения заключается в том, что фармацевтическая композиция для приготовления инъекционного раствора при использовании в лечении магнитной гипертермии представляет собой лиофилизат раствора магнитных наночастиц кобальтового феррита (CоFе2О4) размером не более 20 нм, покрытых молекулами сорбита, при следующем соотношении компонентов, мас.%: кобальтовый феррит 70-75, сорбит 25-30. Технический результат: обеспечение возможности перерастворения заявляемой фармацевтической композиции и повторного высушивания с сохранением ее стабильности и фармакологических свойств, увеличении срока хранения раствора, приготовленного из заявляемой фармацевтической композиции. 2 н. и 6 з.п. ф-лы, 6 табл., 37 ил.
Изобретение относится к области химической энзимологии и химико-фармацевтической промышленности и предназначено для лечения гинекологических и проктологических заболеваний, сопровождающихся окислительным стрессом. Композиция для лечения гинекологических и проктологических заболеваний, сопровождающихся окислительным стрессом, состоит из антиоксидантного действующего вещества и основы. В качестве действующего вещества она содержит частицы, полученные путем смешения буферных растворов антиоксидантного фермента супероксиддисмутазы в концентрации 2,5-10,0 мг/мл и поликатиона в концентрации 2,5-10,0 мг/мл, перемешивания и выдерживания смеси с последующими добавлением в нее буферного раствора полианиона в концентрации 2,5-10,0 мг/мл, перемешиванием и выдерживанием полученной смеси, добавлением в нее водного раствора глутарового альдегида, взятого в количестве, обеспечивающем его мольное соотношение с аминогруппами поликатиона 0,3-1,5, выдерживанием смеси, добавлением в смесь водного раствора боргидрида натрия в концентрации 1-2 мг/мл, очисткой смеси с использованием мембранной фильтрующей системы с пределом пропускания 90-130 килодальтон, лиофильной сушкой очищенной смеси и смешением лиофилизата с основой. Поликатион выбирают из группы, включающей протамин, полилизин и полиаргинин. Полианион представляет собой блок-сополимер полиглутаминовой кислоты и полиэтиленгликоля или блок-сополимер полиаспарагиновой кислоты и полиэтиленгликоля. Компоненты используются в заявленных количествах. Использование изобретения позволяет повысить эффективность лечения воспалительных заболеваний и повышает с 12 до 18 ч продолжительность выхода действующего вещества из композиции. 8 пр.
Изобретение относится к области химической энзимологии и лекарственных средств для местного применения и предназначено для лечения воспалительных процессов, сопровождающихся окислительным стрессом в глазу. Композиция, снижающая окислительный стресс в глазу, состоит из фосфатного буферного раствора и действующего вещества на основе частиц антиоксидантного фермента супероксиддисмутазы. В качестве действующего вещества она содержит частицы, полученные путем смешения буферных растворов супероксиддисмутазы в концентрации 2,5-10,0 мг/мл и поликатиона в концентрации 2,5-10,0 мг/мл, перемешивания и выдерживания смеси, добавления в нее буферного раствора полианиона в концентрации 2,5-10,0 мг/мл, перемешивания и выдерживания полученной смеси с последующим добавлением в смесь водного раствора глутарового альдегида, взятого в количестве, обеспечивающем его мольное соотношение с аминогруппами поликатиона 0,3-1,5, выдерживанием смеси, добавлением в смесь водного раствора боргидрида натрия в концентрации 1-2 мг/мл и очисткой смеси с использованием мембранной фильтрующей системы с пределом пропускания 90-130 килодальтон при конечном значении рН композиции 6,8-7,6. Поликатион выбирают из группы, включающей протамин, полилизин и полиаргинин. Полианион представляет собой блок-сополимер полиглутаминовой кислоты и полиэтиленгликоля или блок-сополимер полиаспарагиновой кислоты и полиэтиленгликоля. Компоненты используются в заявленных количествах. Использование изобретения позволяет увеличить суммарный выход супероксиддисмутазы (СОД) по активности у частиц с 8 до 47-55%, а также повысить стабильность значений активности СОД у частиц и повысить стабильность размеров частиц в процессе их хранения. 7 пр.

Изобретение относится к конъюгату формулы (I) для лечения опухолей, экспрессирующих ПСМА, включающих ПСМА-лиганд с линкером и противоопухолевый препарат ММАЕ, композиции для приготовления лиофилизата на его основе, лекарственной форме для терапии и торможения роста опухоли предстательной железы, экспрессирующей ПСМА, полученной путем лиофилизации данной композиции, раствору для инфузий или инъекций, содержащему такую лекарственную форму, восстановленную растворителем, содержащим этиловый спирт 95% и полисорбат 80 при массовом соотношении (30-60):(70-40), соответственно. Техническим результатом заявляемой группы изобретений является высокая аффинность и селективность действия заявляемых конъюгатов в отношении клеток, экспрессирующих ПСМА. 6 н. и 6 з.п. ф-лы, 15 ил., 27 табл., 7 пр.

Изобретение относится к области медицины, а именно экспериментальной медицины, и может быть использовано для прижизненных наблюдений за уровнем активных форм кислорода (АФК) в органах и тканях. Способ включает предварительную подготовку экспериментальных животных с подкожно привитой опухолью, для чего животных наркотизируют посредством внутрибрюшинного введения раствора золетила в концентрации 50-75 мг/кг с ксилазином в концентрации 5-7,5 мг/кг, обеспечение доступа к подкожной опухоли животного, формирование ванночки для проведения исследования из кожной складки и подкожной мускулатуры спины животного, заполнение ванночки фосфатно-солевым буфером с рН 7.4, подготовку измерительного наноэлектрода, представляющего собой нанопипетку, заполненную пиролитическим углеродом с осажденной на нем платиной, с предварительной калибровкой наноэлектрода по пероксиду водорода, размещение экспериментального животного на предметном столе микроскопа, установку измерительного наноэлектрода в держателе интравитально-электрохимического модуля (ИВЭХ-модуля), взаимное позиционирование опухоли и измерительного наноэлектрода, помещение хлорсеребряного электрода сравнения в ванночку с раствором фосфатно-солевого буфера, подключение его к измерительной системе, подачу линейной развертки потенциала от -800 мВ до +800 мВ, пошаговое введение наноэлектрода в опухоль на заданную глубину под заданным углом и измерение силы тока при потенциале +800 мВ для определения уровня АФК на каждом шаге погружения наноэлектрода, определение значения концентрации АФК в опухоли по соответствующей калибровочной кривой, для построения которой наноэлектрод и электрод сравнения подключают к приборам для снятия вольтамперных характеристик и последовательно опускают в водные растворы пероксида водорода с известной концентрацией в диапазоне от 10-7 до 10-4 моль/л, подают развертку потенциала от -800 мВ до +800 мВ относительно хлорсеребряного электрода сравнения на наноэлектрод и измеряют значения силы тока при +800 мВ в каждом водном растворе пероксида водорода и строят калибровочную кривую, где на одной оси приведена концентрация пероксида водорода, а на другой - величина силы тока. Использование изобретения позволяет определить концентрацию АФК внутри опухоли живого экспериментального животного в заданной точке с высоким пространственным и временным разрешением, что позволит получить полную картину распределения АФК в объеме опухоли. 3 з.п. ф-лы, 1 пр., 6 ил.

Изобретение относится к медицине, а именно к биомедицине, и может быть использовано для измерения концентрации кислорода в подкожной опухоли экспериментальных животных. Проводят предварительную подготовку экспериментальных животных с подкожно привитой опухолью, для чего животных наркотизируют посредством внутрибрюшинного введения раствора золетила в концентрации 50-75 мг/кг с ксилазином в концентрации 5-7,5 мг/кг. Осуществляют обеспечение доступа к подкожной опухоли животного, для чего проводят разрез кожи по линии позвоночника и отделяют кожную складку с опухолью от прилегающих тканей. Проводят прижигание кровеносных сосудов в местах разреза и очищают опухоль от капсулы посредством удаления ее верхних слоев. Осуществляют формирование ванночки для проведения исследования из кожной складки и подкожной мускулатуры спины животного, для чего края кожной складки приподнимают и закрепляют с помощью шовного материала. Заполняют ванночку фосфатно-солевым буфером с рН 7.4. Проводят подготовку измерительного наноэлектрода, представляющего собой нанопипетку, заполненную пиролитическим углеродом с осажденной на нем платиной, с предварительной калибровкой наноэлектрода по кислороду. Размещают экспериментальное животное на предметном столе микроскопа. Осуществляют установку измерительного наноэлектрода в держателе интравитально-электрохимического модуля (ИВЭХ-модуля). Проводят взаимное позиционирование опухоли и измерительного наноэлектрода, помещают хлорсеребряный электрод сравнения в ванночку с раствором фосфатно-солевого буфера, подключают его к измерительной системе. Осуществляют подачу линейной развертки потенциала от -800 мВ до +800 мВ, пошаговое введение наноэлектрода в опухоль на заданную глубину под заданным углом и измерение силы тока при потенциалах от -500 мВ до -600 мВ для определения уровня кислорода на каждом шаге погружения наноэлектрода. Определяют значения концентрации кислорода в опухоли по соответствующей калибровочной кривой. Способ обеспечивает возможность определения концентрации кислорода внутри опухоли живого экспериментального животного в заданной точке с высоким пространственным и временным разрешением за счет применения наноэлектрода при значениях потенциала от -500 мВ до -600 мВ относительно хлорсеребряного электрода сравнения, что позволяет получить полную картину распределения кислорода в объеме опухоли. 3 з.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к области органической и медицинской химии, а также молекулярной биологии и касается нового класса соединений для визуализации клеток и тканей, экспрессирующих ПСМА, в том числе таких, как клетки рака предстательной железы. Заявляются новые диагностические конъюгаты для визуализации патогенных клеток либо тканей, экспрессирующих ПСМА, включающих ПСМА-лиганд с линкером и флуоресцентный краситель, способ его получения и применения. Техническим результатом заявляемой группы изобретений является высокая аффинность и селективность действия заявляемых конъюгатов в отношении клеток, экспрессирующих ПСМА. Данные соединения позволяют расширить арсенал диагностических средств для визуализации клеток с высокой экспрессией ПСМА. Использование азидопроизводного аминопентановой кислоты позволяет получить ПСМА вектор с длинным гидрофобным линкером и защищенными карбоксигруппами, что в свою очередь облегчает его модификацию, увеличивает выход и снижает количество используемых в процессе растворителей вследствие значительного увеличения растворимости исходного соединения (ПСМА вектор с длинным гидрофобным линкером и защищенными карбоксигруппами). Ключевой особенностью заявляемого конъюгата является наличие в структуре длинного гидрофобного линкера, а также дополнительных ароматических фрагментов, наличие которых способствует лучшему связыванию заявляемого конъюгата с белковой мишенью, за счет вовлечения дополнительных взаимодействий между соединением и гидрофобными карманами в структуре гидрофобного туннеля белковой мишени. 6 н. и 12 з.п. ф-лы, 29 ил., 8 табл., 3 пр.

Изобретение относится к способу получения водосодержащей суспензии частиц, состоящих из антиоксидантного фермента супероксиддисмутазы, поликатиона и полианиона, путем смешения буферных растворов супероксиддисмутазы и поликатиона, выбранного из группы, включающей протамин, полилизин и полиаргинин, перемешивания и выдерживания полученной смеси с последующими добавлением в нее водного буферного раствора полианиона блок-сополимера полиглутаминовой кислоты и полиэтиленгликоля или блок-сополимера полиаспарагиновой кислоты и полиэтиленгликоля, перемешиванием и выдерживанием полученной смеси, добавлением в нее водного раствора глутарового альдегида, выдерживанием смеси, добавлением в смесь водного раствора боргидрида натрия и очисткой смеси с использованием мембранной фильтрующей системы, причем в качестве буфера используют буферный раствор с рН 5-8, содержащий, по крайней мере, гидрофосфат натрия и дигидрофосфат натрия, глутаровый альдегид добавляют в количестве, обеспечивающем его мольное соотношение с аминогруппами поликатиона 0,3-1,5, и используют фильтрующую систему с пределом пропускания 90-130 килодальтон. Технический результат - повышение суммарного выхода СОД по активности, повышение стабильности значений активности СОД у частиц в процессе их хранения, повышение стабильности размеров частиц в процессе их хранения, а также снижение раздражающей способности суспензии частиц при ее введении в глаз. 4 ил., 18 пр.

Настоящее изобретение относится к веществу общей формулы (I),где n=3-5; X, Y, Z независимо друг от друга представляют собой F, Cl, Br, Н; R = ОН, Н;R1 = Н, Br. Также изобретение относится к способу получения такого вещества, к его применению для получения конъюгата с лекарственным или диагностическим агентом для диагностики или лечения заболеваний, вызванных клетками, экспрессирующими простатический специфический мембранный антиген (ПСМА), а также к самому конъюгату. Технический результат – получение новых средств доставки диагностических или терапевтических средств, включающих ПСМА-лиганд с линкером, обладающих низкой токсичностью, высокой аффинностью и селективностью действия в отношении клеток, экспрессирующих ПСМА, что позволяет использовать их для лечения заболеваний, связанных с высокой экспрессией ПСМА, с меньшей дозировкой при избирательном действии на раковые клетки, не затрагивая здоровые клетки. 4 н. и 8 з.п. ф-лы, 20 ил., 1 табл., 1 пр.

Изобретение относится к химико-фармацевтической промышленности. Способ получения частиц для лечения гинекологических и проктологических заболеваний, сопровождающихся окислительным стрессом, включает смешение буферных растворов антиоксидантного фермента супероксиддисмутазы (СОД) и поликатиона, выбранного из протамина, полилизина и полиаргинина, перемешивание и выдерживание полученной смеси с последующими добавлением в нее буферного раствора полианиона блок-сополимера полиглутаминовой кислоты и полиэтиленгликоля или блок-сополимера полиаспарагиновой кислоты и полиэтиленгликоля, перемешивание и выдерживание полученной смеси, добавление в нее водного раствора глутарового альдегида, выдерживание смеси, добавление в смесь водного раствора боргидрида натрия и очистку смеси с использованием мембранной фильтрующей системы и отличается тем, что глутаровый альдегид добавляют в количестве, обеспечивающем его мольное соотношение с аминогруппами поликатиона 0,3-1,5, и используют фильтрующую систему с пределом пропускания 90-130 килодальтон, причем после очистки смеси проводят ее лиофильную сушку. Изобретение увеличивает суммарный выход СОД по активности и повышает в 2,5-3 раза стабильность значений активности СОД у частиц. 4 ил., 18 пр.

Группа изобретений относится к лекарственным средствам местного применения для моно- и комплексной терапии заболеваний глаз, сопровождающихся окислительным стрессом. Фармацевтическая композиция для местного применения в форме суспензии содержит действующее вещество в виде включенной в сшитые глутаровым альдегидом наночастицы супероксиддисмутазы, активность которой составляет 50-500 кЕД/мл, в буферном растворе, а также целевые добавки и/или лекарственные средства, при этом в наночастицах фермент покрыт внутренней оболочкой из протамина и внешней оболочкой из блок-сополимера поли(глутаминовой кислоты) и полиэтиленгликоля, при этом гидродинамический радиус наночастиц фермента составляет 40-80 нм, концентрация наночастиц в суспензии равна 0,5-5⋅1014 частиц/мл, буферный раствор изотоничен физиологическому раствору и имеет рН 7,4. Также раскрыт способ применения указанной композиции, заключающийся в её инстилляции в конъюнктивальную полость глаза ежедневно 2-3 раза в день, длительностью от 1 недели до момента завершения воспалительного процесса. Группа изобретений обеспечивает усиление антиокислительной активности супероксиддисмутазы. 2 н. и 3 з.п. ф-лы, 6 ил., 1 табл., 5 пр.
Изобретение относится к биомедицине и может быть использовано для определения цитотоксичности веществ путем обработки клетки веществом с последующим определением токсичности вещества по изменению уровня внутриклеточных активных форм кислорода. Определение уровня внутриклеточных активных форм кислорода проводят путем ввода внутрь клетки заполненного углеродом кварцевого нанокапилляра, содержащего платину в полости острия нанокапилляра, имеющего форму усеченного конуса, с последующим определением изменения сигнала, вызванного электрохимической реакцией на острие капилляра с участием активных форм кислорода. Изобретение обеспечивает упрощение определения цитотоксичности веществ, а также имеет более высокую чувствительность по сравнению с аналогами. 4 пр.
Изобретение относится к области биофизики и прикладной биохимии и может быть использовано для контролируемого введения веществ в микрообъекты. Для этого вводят в микрообъект нанокапилляр, содержащий не менее двух изолированных друг от друга каналов, с последующим введением вещества. При этом используют нанокапилляр, у которого, по крайней мере, один из каналов содержит электрохимически активный материал и, по крайней мере, один канал содержит вводимое или генерирующее его вещество. Контроль за введением вещества осуществляют путем измерения изменения электрического потенциала и/или силы тока, обусловленных электрохимической реакцией на электрохимически активном материале в результате введения вещества. Изобретение позволяет повысить степень контроля за введением веществ в микрообъекты за счет определения дополнительных информативных параметров. 5 пр.
Изобретение относится к области зондовой микроскопии. Сущность способа исследования нано- и микрообъектов методом зондовой микроскопии состоит в том, что объект помещают на пористую подложку, фиксируют на поверхности подложки и сканируют зафиксированный объект методом зондовой микроскопии. Используют подложку со сквозными порами, размер которых менее размера исследуемого объекта, а фиксацию объекта осуществляют ламинарным потоком жидкости или газа, подаваемым на подложку со стороны, подлежащей сканированию, причем величина прижимной силы, действующей со стороны потока на объект, находится в диапазоне 10-12-10-3 ньютон. Использование заявленного способа позволяет исследовать структуры и механические свойства объектов органической и неорганической природы, повышать его информативность для исследования нано- и микрообъектов методом зондовой микроскопии. 7 пр.
Изобретение относится к области медицины, а именно к лабораторной диагностике, и может быть использовано для определения простат-специфического антигена (ПСА) в жидкой среде. Для этого жидкая среда взаимодействует с сенсором, выполненным в виде плоского гибкого кантилевера. При этом, по меньшей мере, одна из плоскостей кантилевера содержит диоксид кремния и способен отражать световое излучение. Одна из плоскостей покрыта бычьим сывороточным альбумином. Другая содержит два слоя, один из которых ковалентно связан с поверхностью кантилевера, а другой содержит химически связанные с предыдущим слоем молекулы антитела, специфически распознающего простат-специфический антиген. Далее определяют изменения изгиба кантилевера путем освещения поверхности кантилевера лучом света и измерения отклонения луча света, отраженного от поверхности кантилевера. При этом в качестве сенсора используют кантилевер, у которого слой, ковалентно связанный с поверхностью кантилевера, выполнен из 3-аминопропилсилатрана. Изобретение обеспечивает проведение качественного и количественного анализа жидких сред на содержание ПСА и повышает чувствительность определения ПСА до 0,1 нанограмм/миллилитр. 5 пр.

 


Наверх