Патенты автора Седов Алексей Викторович (RU)

Изобретение относится к средствам автоматического контроля физико-химических компонентов пульп, растворов и может быть использовано в области обогащения руд полезных ископаемых, химической и других отраслях промышленности. Автоматическая система контроля физико-химических параметров жидкой фазы пульпы содержит управляющий контроллер с панелью визуализации, пробозаборник, накопительную емкость с датчиком уровня материала, переключающие клапаны, клапаны подачи сжатого воздуха и воды, измерительную ячейку, выполненную из абразивоустойчивого прозрачного материала, датчики концентрации компонентов жидкой фазы пульпы, выполненные в виде кондуктометрического и потенциометрических датчиков, рефрактометра, микродозатора титранта и оптического индикатора точки эквивалентности. Система дополнительно содержит станцию приема и отправки пробы, трубопровод пневмодоставки, станцию приема и деаэрации с датчиком уровня материала, первую измерительную ячейку, содержащую кондуктометрический, потенциометрический датчики и рефрактометр, вторую измерительную ячейку, содержащую датчик уровня материала, мешалку с электроприводом и датчик точки эквивалентности, выполненный в виде видеокамеры с источником внешней подсветки материала ячейки, емкость с раствором кислоты, оснащенную разгрузочным клапаном, емкость, содержащую раствор вещества-индикатора с микродозатором, емкость, содержащую раствор титранта с микродозатором. Вход станции приема и отправки пробы соединен со сливным выходом накопительной емкости, а ее выход подключен ко входу трубопровода пневмодоставки, выход которого соединен со входом станции приема и деаэрации, первый выход которой соединен со входом первой измерительной ячейки, второй выход соединен с первым входом второй измерительной ячейки, второй, третий и четвертый входы второй измерительной ячейки соединены с соответствующими выходами разгрузочного клапана емкости с раствором кислоты и микродозаторов растворов индикатора и титранта, причем измерительные входы контроллера соединены с выходами датчиков уровня, концентрации, рефрактометра и видеокамеры, а выходы контроллера соединены с управляющими входами переключающих клапанов, микродозаторов, электропривода мешалки, видеокамеры и источника внешней подсветки. Техническим результатом является повышение точности контроля физико-химических параметров жидкой фазы пульпы, растворов и улучшение эксплуатационных характеристик системы. 1 ил.

Изобретение относится к устройствам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Устройство автоматического контроля крупности частиц в потоке пульпы содержит чувствительный элемент 4, выполненный в виде микрометрического щупа 7, подпятник 13 микрометрического щупа 7, датчик величины перемещения и привод микрометрического щупа 7. Устройство дополнительно содержит управляющий контроллер, пневмораспределитель, накопительную емкость 1, переключающие клапаны, измерительную кювету 6, перекачивающий насос 17, причем привод микрометрического щупа 7 выполнен в виде бесштокового ленточного цилиндра, датчик величины перемещения микрометрического щупа 7 выполнен в виде микропроцессорного контактного измерительного датчика 14, выход которого соединен со входом усилителя 16 сигнала, накопительная емкость 1 содержит датчики 2 и 3 уровня и плотности пульпы. Измерительная кювета 1 выполнена в виде проточной емкости, внутри которой расположен подпятник 13 микрометрического щупа 7, а на внешней поверхности закреплен подпятник 15 микропроцессорного контактного измерительного датчика 14, при этом всасывающий патрубок перекачивающего насоса 17 соединен с впускным коллектором 18, 1-й вход которого соединен с клапаном на выходе накопительной емкости, 2-й вход коллектора соединен с выходом клапана магистрали забора пробы из технологической емкости, а нагнетающий патрубок перекачивающего насоса 17 соединен с выпускным коллектором 18, 1-й выход которого соединен с клапаном 25 сброса пульпы в дренаж из накопительной емкости 1, 2-й выход соединен с клапаном 26 подачи пробы на 1-й вход накопительной емкости, 3-й выход соединен с клапаном 27 подачи пробы в измерительную кювету 6, 2-й вход накопительной емкости 1 соединен с выходом измерительной кюветы 6, а 3-й вход накопительной емкости 1 соединен с выходом клапана 29 подачи воды. Управляющие выходы пневмораспределителя 30 соединены с соответствующими входами бесштокового ленточного цилиндра 31, измерительные входы контроллера 37 соединены с выходами датчиков уровня, плотности пульпы в накопительной емкости и усилителя сигнала микропроцессорного контактного измерительного датчика, а выходы контроллера 37 соединены с управляющими входами переключающих клапанов, пневмораспределителя и перекачивающего насоса 17. Технический результат - повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы за счет устранения влияния на результаты измерений загрязнения пульпы посторонними материалами и применения принципиально нового механизма - пневматического привода. 5 з.п. ф-лы, 2 ил.

Использование: для рентгеновского флуоресцентного анализа пульп обогатительного производства. Сущность изобретения заключается в том, что устройство для рентгеновского флуоресцентного анализа пульп обогатительного производства содержит пробозаборник, измерительную камеру, малогабаритный многоканальный рентгенофлюоресцентный анализатор, электронный блок обработки информации и управления устройством, при этом пробозаборник выполнен в виде аэролифта, а измерительная камера выполнена в виде проточной емкости с переливом, при этом устройство дополнительно содержит динамический сократитель пробы, перекачивающий насос, вакуум-линию, вакуумный насос, датчик вакуума, держатель пробы, состоящий из корпуса фильтр-патрона, закрепленного на подвижной тяге, содержащей на противоположном от корпуса фильтр-патрона конце зубчатую рейку, находящуюся в зацеплении с ведущей шестерней, насаженной на ротор шагового электродвигателя, управляемого контроллером, обжимной механизм, устройство также дополнительно содержит автоматические переключающие клапаны подачи воздуха в аэролифт, сброса пробы пульпы в дренаж из накопительной емкости, сброса пульпы в дренаж из циркуляционного контура подачи пробы пульпы в измерительную камеру, подачи воды на промывку накопительной емкости, подачи воды на обмыв валиков, автоматический трехходовой клапан переключения присоединения вакуум-линии к магистрали поддачи воды на промывку или к всасывающему входу вакуумного насоса. Технический результат: обеспечение возможности повышения точности выполнения анализов и надежности работы устройства. 5 з.п. ф-лы, 3 ил.

Изобретение относится к способам контроля объёмного расхода и плотности пульпы в напорных трубопроводах и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля расхода и плотности пульпы в напорных трубопроводах включает измерение плотности по перепаду давления в восходящем потоке материала. Согласно изобретению на восходящей части напорного трубопровода выделяют два равновеликих участка, геометрические центры которых разнесены по ходу потока на величину, не превышающую 3 расстояния между нижней и верхней границами первого по ходу потока участка измерения. На нижней и верхней границах выделенных участков осуществляют отбор давления, для каждой пары границ участков измеряют перепады давлений, вычисляют взаимнокорреляционную функцию случайных сигналов, характеризующих изменение величин измеренных перепадов давлений во времени, находят абсциссу τ максимума взаимнокорреляционной функции, определяющую время взаимного сдвига по фазе полученных случайных сигналов. По величине расстояния между геометрическими центрами участков и времени τ определяют скорость потока и по известной площади внутреннего сечения трубопровода и найденной скорости потока вычисляют его расход. Технический результат - повышение надёжности и точности измерений расхода пульпы в закрытых трубопроводах за счёт устранения влияния на результаты измерений абразивного воздействия пульпы, физических свойств измеряемого материала и осуществления прямого измерения скорости потока. 3 ил.

Изобретение относится к устройствам автоматического дозирования флотореагентов и других жидких компонентов в технологический процесс и может быть использовано в области обогащения руд полезных ископаемых, а также в горнометаллургической, строительной и других отраслях промышленности. Заявленное устройство автоматического дозирования флотореагентов включает дозатор, блок управления, трубопроводы, управляющий и отсечной клапаны, при этом дополнительно содержит мерную емкость, имеющую в нижней части выпускной трубопровод с отсечным клапаном, а в верхней - датчик верхнего уровня, при этом дозатор закреплен на неподвижно установленном тензорезисторе, выход управляющего клапана через питающий трубопровод и гибкую вставку соединен с питающим входом в дозатор, нижняя часть дозатора имеет выпускной патрубок со встроенным дросселем, при этом входы блока управления соединены с сигнальными выходами тензорезистора и датчика верхнего уровня, а выходы - с управляющими входами управляющего и отсечного клапанов. Технический результат заключается в повышении надежности и точности регулирования расхода жидкости за счет устранения влияния изменения ее физических свойств путем контроля фактического расхода, а также благодаря наличию возможности автоматической градуировки дозатора. 4 з.п. ф-лы, 3 ил.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Причем осуществляют программное управление приводом механизма ощупывания для обеспечения стабилизации длительности цикла возвратно-поступательного движения механизма ощупывания и синхронизации положения микрометрического щупа в момент измерения с циклом опроса вычислительным устройством величины электрического сигнала. При этом ощупывание частиц материала осуществляют мультиэлементным микрометрическим щупом, содержащим "n" независимых чувствительных элементов, обеспечивающих одновременное ощупывание "n" частиц и преобразование измеренных величин частиц в "n" электрических сигналов, пропорциональных их абсолютным размерам. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы за счет устранения влияния на результаты измерений колебаний параметров питающей сети и ускорения процесса измерений. 3 ил.

Способ автоматического измерения расхода пульпы в открытых каналах включает измерение скорости и высоты потока материала, причем скорость потока пульпы определяют по скорости вращения полого мерного колеса, выполненного в виде свободно подвешенного поплавка и приводимого в движение силой сцепления рельефной поверхности колеса с верхним слоем потока пульпы. Устройство для автоматического измерения расхода пульпы в открытых каналах содержит вычислительный блок, приспособление для измерения скорости потока и уровнемер. Указанное приспособление для измерения скорости потока выполнено в виде полого мерного колеса, при этом ось вращения мерного колеса подвижно закреплена во втулках, расположенных на нижнем конце вильчатого рычага, на котором дополнительно установлены форсунки для подачи воды, а на верхнем конце вильчатого рычага горизонтально размещена отражающая площадка. Ось вращения мерного колеса связана с крыльчаткой датчика импульсов. Вильчатый рычаг при помощи параллелограммного механизма закреплен на неподвижной Г-образной стойке. Технический результат - повышение надежности и точности измерений расхода пульпы в открытых каналах за счет устранения влияния на результаты измерений абразивного воздействия пульпы и физических свойств измеряемого материала. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Для чего отбирают пробу пульпы, фильтруют, направляют в кондиционирующую емкость. Затем измеряют плотность пробы в кондиционирующей емкости. При этом разбавляют пробу пульпы водой до состояния, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом. Затем производят прокачку разбавленной пробы в режиме циркуляции по контуру, включающему кондиционирующую емкость и камеру измерения. После чего осуществляют измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, и производят вычисление содержания контролируемого класса по результатам измерения содержаний промежуточных классов крупности. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы. 4 ил.

 


Наверх