Патенты автора Селезнев Валерий Григорьевич (RU)

Использование: для определения напряжений в колеблющейся лопатке. Сущность изобретения заключается в том, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода, используя результаты измерений, вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки. Технический результат: обеспечение возможности определения напряжений в колеблющейся лопатке посредством бесконтактного рентгенографического метода. 1 ил.

Изобретение относится к области испытаний деталей и узлов турбомашин, в частности к способам определения динамических характеристик рабочих колеc. Техническим результатом, достигаемым в заявленном изобретении, является повышение достоверности определения диаметральных форм колебаний вращающегося колеса турбомашины. Технический результат достигается тем, что в способе определения диаметральных форм колебаний вращающегося колеса турбомашины на первом этапе формируют последовательность оптических образов диаметральных форм колебаний неподвижного колеса, для чего возбуждают колебания неподвижного рабочего колеса, регистрируют амплитудно-частотный спектр его колебаний, с использованием оптического метода регистрации выявляют диаметральные формы колебаний неподвижного рабочего колеса и сопоставляют их с частотами колебаний, на которых регистрируются пиковые значения амплитуд колебаний, на втором этапе устанавливают на рабочее колесо турбомашины тензодатчик, выводят турбомашину на рабочий режим и в рабочем диапазоне частот вращения ротора осуществляют регистрацию выходного сигнала тензодатчика, при этом выявляют частоту вращения, на которой регистрируется максимальная амплитуда сигнала тензодатчика, преобразуют сигнал с тензодатчика в амплитудно-частотный спектр колебаний рабочего колеса и сохраняют его в качестве амплитудно-частотного спектра колебаний рабочего колеса, соответствующего указанной частоте вращения ротора, на третьем этапе сопоставляют частоты колебаний, соответствующие пиковым значениям амплитуд на сохраненном амплитудно-частотном спектре колебаний вращающегося колеса, с амплитудно-частотным спектром колебаний неподвижного колеса и принимают выявленные диаметральные формы колебаний неподвижного рабочего колеса в качестве диаметральных форм колебаний вращающегося колеса на сопоставленных частотах, соответствующих пиковым значениям амплитуд колебаний. 7 ил.
Изобретение относится к области машиностроения, в частности турбостроения, и может быть использовано для доводки авиационных двигателей при стендовых испытаниях. Снабжают лопатку колеса по меньшей мере одним тензометрическим датчиком, обеспечивают регистрацию сигнала тензометрического датчика, следят за уровнем сигнала и с использованием быстрого преобразования Фурье осуществляют обработку сигнала в окрестности точки с максимальным уровнем сигнала для получения значений частот и амплитуд колебаний вращающегося колеса, при этом частоту колебаний колеса с наибольшей амплитудой выбирают в качестве наблюдаемой, далее, представляя сигнал тензометрического датчика на наблюдаемой частоте в координатах «амплитуда-время», следят за периодичностью сигнала и в случае нарушения его периодичности фиксируют временной диапазон, соответствующий выявленному нарушению с определением временной координаты нарушения периодичности сигнала, и затем в упомянутом временном диапазоне осуществляют вейвлет-преобразование сигнала, осуществляя переход от его представления в координатах «амплитуда-время» в представление сигнала тензометрического датчика в координатах «частота-время», анализируют полученную картину сигнала и по виду полученной картины в окрестности временной координаты нарушения периодичности сигнала судят о характере касания лопатки о корпус турбомашины. Изобретение обеспечивает повышение достоверности выявления наличия и характера касания лопатки о корпус турбомашины при сокращении затрат времени на проведение испытаний посредством непрерывного мониторинга моментов касания лопаток о корпус турбомашины. 6 ил.

Изобретение может быть использовано для анализа быстропротекающих процессов в рабочих колесах турбомашин в процессе поузловой доводки рабочих колес турбин и компрессоров газотурбинных двигателей. Устройство обеспечивает анализ динамических процессов в рабочих колесах турбомашин в режиме реального времени с использованием алгоритма быстрого преобразования Фурье (БПФ). Устройство содержит датчик частоты вращения ротора турбомашины, тензодатчик, размещенный на лопатке рабочего колеса, датчик пульсаций давления, размещенный в проточной части турбомашины, блок обработки сигналов датчиков, входы которого информационно связаны с выходами упомянутых датчиков, блок синхронизации, выход которого связан с входом синхронизации блока обработки сигналов датчиков, и блок визуализации результатов обработки. Блок обработки сигналов датчиков включает два блока спектрального анализа, выполняющие алгоритм БПФ для информации, получаемой с датчика пульсаций давления и тензодатчика. Технический результат заключается в сокращении времени обработки данных тензометрирования рабочих колес турбомашин при определении источников возбуждения колебаний рабочих колес, определении их форм колебаний. 1 ил., 2 табл.

Изобретение может быть использовано в процессе доводки деталей и узлов турбомашин, в частности авиационных двигателей, а также для изучения явлений ротор-статорного взаимодействия и усиления амплитуд колебаний, вызванного расстройкой рабочих колес. Способ характеризуется тем, что нагружают лопатки рабочего колеса пульсирующими струями в осевом направлении, при этом количество струй соответствует количеству лопаток статорного колеса. Измеряют амплитуду колебаний лопаток рабочего колеса, по меньшей мере один раз изменяют количество струй, используемых для нагружения лопаток рабочего колеса, и повторно измеряют амплитуду колебаний лопаток рабочего колеса. Сравнивают измеренные амплитуды колебаний лопаток рабочего колеса и по результату сравнения судят о требуемом количестве лопаток колеса, причем частоту пульсаций струй выбирают равной частоте колебаний лопаток рабочего колеса на выбранном режиме рабочего диапазона турбомашины. Технический результат заключается в снижении уровня вибронапряжений в лопатках рабочего колеса. 2 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для поузловой доводки авиационных двигателей при стендовых испытаниях, а именно доводки рабочих колес турбин и колес компрессоров. При реализации способа определения характеристик несинхронных колебаний рабочего колеса турбомашины, содержащей установленную в корпусе, по меньшей мере, одну ступень с рабочим колесом и направляющим или сопловым аппаратом, подсчитывают количество лопаток рабочего колеса и направляющего или соплового аппарата. Экспериментально определяют частоты колебаний рабочего колеса, соответствующие режиму появления максимальных напряжений в лопатках рабочего колеса в рабочем диапазоне частот вращения турбомашины. Для выявленных частот вычисляют коэффициенты (k1; k2) для вперед бегущей и назад бегущей волн деформаций. По рассчитанным коэффициентам судят о количественной мере диаметральных колебаний рабочего колеса на данной частоте. Технический результат заключается в сокращении затрат времени на проведение испытаний при определении характеристик несинхронных колебаний рабочего колеса турбомашины, а также в повышении достоверности определения количественной меры диаметральных форм колебаний рабочего колеса турбомашины. 1 табл., 2 ил.

Изобретение используется для поузловой доводки авиационных двигателей при стендовых испытаниях, а именно доводки рабочих колес турбин и колес компрессоров. При реализации способа определения частоты вынужденных колебаний рабочего колеса (РК) определяют количество лопаток РК и количество лопаток направляющего аппарата (НА) или соплового аппарата (СА) ступени турбомашины. Выводят турбомашину на расчетный режим работы, измеряют частоту вращения РК. При этом ступень турбомашины представляют в виде механического генератора, состоящего из НА или СА и РК, вращающегося в потоке текучей среды (воздуха или газа). Частоту вынужденных колебаний РК определяют как частоту f вынужденных колебаний механического генератора по формуле: f=kn+b, где k - коэффициент, зависящий от конструктивных особенностей механического генератора, изменяющийся в диапазоне от 0,8 до 1,5; n - частота вращения РК; b - целочисленная величина, пропорциональная количеству лопаток. Технический результат заключается в сокращении затрат времени на проведение испытаний при определении частот вынужденных колебаний рабочего колеса турбомашины. 2 з.п. ф-лы, 4 табл., 1 ил.

Изобретение относится к измерительной технике и может быть использовано при проектировании и поузловой доводке элементов ступеней турбомашин, а именно рабочих колес, колес направляющих и сопловых аппаратов. Способ характеризуется тем, что подсчитывают количество лопаток рабочего колеса, подсчитывают количество лопаток направляющего или соплового аппарата, вычисляют предполагаемые резонансные частоты колебаний рабочего колеса в рабочем диапазоне частот вращения турбомашины. Затем экспериментально выявляют резонансные частоты колебаний рабочего колеса, сопоставляют значения предполагаемых и экспериментально выявленных резонансных частот колебаний. По результату сопоставления определяют качественную составляющую и/или количественную составляющую характеристики колебательного движения элемента турбомашины. Технический результат заключается в ускорении и упрощении процесса поузловой доводки элементов ступеней турбомашин, а именно рабочих колес, колес направляющих и сопловых аппаратов, посредством установления зависимости частоты и формы колебаний от конструктивных параметров исследуемой ступени турбомашины. 3 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к области измерения, в частности определения механических свойств материалов. Способ заключается в возбуждении колебаний образца композиционного материала в виде прямоугольной пластины со свободными краями и определении частот и картин форм собственных колебаний пластины. Причем экспериментально полученные картины форм колебаний разделяют на три группы, к первой из которых относят формы колебаний пластины с узловыми линиями, параллельными меньшей стороне прямоугольной пластины, ко второй группе - формы колебаний с узловыми линиями, параллельными большей стороне пластины, и к третьей - с узловыми линиями, параллельными обеим сторонам пластины, а характеристики композиционного материала определяют путем перебора значений модуля упругости, модуля сдвига и коэффициента Пуассона, подставляя их в математическую модель пластины и сравнивая каждый раз вычисленную частоту колебаний для каждой формы колебаний с частотами и формами колебаний, полученными экспериментально. По частотам и формам колебаний, отнесенным к первой группе, определяют модуль упругости с индексом оси, параллельной большей стороне - Еx, по частотам и формам колебаний второй группы определяют модуль упругости с индексом оси, параллельной меньшей стороне - Еy, по частотам и формам третьей группы - модули сдвига Gxy, Gxz, Gyz. Определение девяти упругих постоянных (Еx, Еy, Еz, vxy, vxz,, Gxy, Gxz, Gyz) осуществляют в следующей последовательности: сначала осуществляют перебор значений модуля упругости, затем модуля сдвига и на заключительном этапе - коэффициента Пуассона. Перебор значений модуля упругости, модуля сдвига и коэффициентов Пуассона завершают в момент расчетного выявления всех экспериментально полученных форм и частот колебаний пластины. Техническим результатом является создание способа определения механических свойств ортотропного композиционного материала посредством возбуждения колебаний последнего. 3 з.п. ф-лы, 5 ил.

 


Наверх