Патенты автора Шаповалова Оксана Вячеславовна (RU)

Изобретение относится к области испытания топлив на стендовых установках, в частности, для оценки низкотемпературной прокачиваемости топлив для дизельных двигателей. Установка содержит размещенные в термокамере топливный бак с датчиком температуры, соединенные последовательно по потоку исследуемого топлива топливоподкачивающий насос с электроприводом, сменные фильтры грубой и тонкой очистки, датчик расхода топлива через фильтр тонкой очистки, датчики давления, расположенные до и после фильтра тонкой очистки, датчик температуры исследуемого топлива, циркуляционный контур для перемешивания топлива в баке при охлаждении и блок информационно-управляющей системы, обеспечивающий сбор информации от измерительной аппаратуры и управление исполнительным оборудованием, размещенный вне термокамеры, в которую дополнительно введены электромагнитные клапаны для автоматизированного управления прокачкой топлива по независимым трассам, имитатор гидравлического сопротивления топливной системы, топливный насос высокого давления с управляемым электроприводом, топливные форсунки с мерной емкостью, датчик давления, расположенный перед фильтром грубой очистки, два датчика давления на выходе насоса высокого давления перед соответствующими топливными форсунками, два дополнительных встроенных датчика температуры топлива в баке и датчик расхода топлива на входе в топливный бак по циркуляционному контуру. Установка позволяет оперативно оценивать прокачиваемость дизельного топлива, охлажденного с заданной скоростью до заданной температуры, последовательно, в контурах низкого и высокого давления, определять значения подачи и давления топлива в топливной линии и прогнозировать критические температуры для обеспечения надежного пуска и работы двигателя.1 з.п. ф-лы, 1 пр., 1 табл., 1 ил.

Изобретение относится к процессам получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Способ получения синтез-газа основан на горении смеси углеводородного сырья с окислителем с внутри одной или нескольких полостей, образованных материалом, проницаемым для смеси углеводородного сырья с окислителем, на внутреннюю поверхность которого нанесен каталитически активный компонент. Полученный синтез-газ может быть использован в химической промышленности для производства метанола, диметилового эфира, синтетических жидких углеводородов и других продуктов. Полученный водород после его выделения из смеси газов может быть использован для питания топливных элементов транспортных средств и автономных источников электроснабжения, а также в качестве сырья и восстановителя в химической, нефтехимической, металлургической и других отраслях промышленности. Техническим результатом является повышение выхода синтез-газа и снижение содержания углеводородов в получаемом синтез-газе. 10 пр.

Изобретение относится к процессу получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Синтез-газ получают при горении смеси углеводородного сырья с окислителем c коэффициентом избытка окислителя менее 1 при температуре менее 1400 К внутри полости, полностью или частично образованной объемной матрицей, проницаемой для смеси газа с окислителем. Ввод смеси углеводородного сырья с окислителем производят через проницаемое дно полости, или через проницаемые стенки полости, или через проницаемые стенки и дно полости, а вывод продуктов горения - через верхнее сечение полости. Смесь углеводородного сырья с окислителем или один из этих газов в полном объеме или частично перед вводом в полость нагревают за счет тепла, выделяемого продуктами горения. Матрицу дополнительно подогревают тепловым излучением, отраженным от проницаемого для продуктов горения экрана, размещенного в полости матрицы. Технический результат заключается в повышении эффективности за счет увеличения выхода синтез-газа при использовании для конверсии углеводородных смесей с высоким содержанием негорючих компонентов, имеющих низкую теплотворную способность. 1 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к устройствам для получения тепла и инфракрасного излучения и может быть использовано в различных бытовых устройствах и технологических процессах для нагрева для и сушки, в том числе с использованием низкокалорийного топлива, например, биогаза, а также для риформинга углеводородных газов. Радиационная горелка содержит корпус с кольцевой крышкой, полую излучающую насадку, выполненную из проницаемого для газа материала, размещенную в корпусе, и систему подвода топливовоздушной смеси, включающую полость для раздачи топливовоздушной смеси. Излучающая насадка выполнена в виде объемной проницаемой для газа матрицы, а трубопровод подвода топливовоздушной смеси частично размещен внутри полости матрицы и соединен с полостью для раздачи топлива. Полость матрицы имеет в поперечном сечении форму многоугольника, круга или эллипса. Матрица выполнена из перфорированной керамики, металлической сетки, прессованной металлической проволоки, металлоткани, пенометалла. Высота полости матрицы превышает максимальный размер ее поперечного сечения. Трубопровод подвода топливовоздушной смеси оснащен теплообменником, расположенным внутри полости матрицы. Теплообменник выполнен в форме спирального трубопровода, размещенного коаксиально внутренней поверхности полости матрицы. Трубопровод подвода топливовоздушной смеси оснащен теплообменником, расположенным над полостью матрицы, которая закрыта сверху проницаемой для газа крышкой. Технический результат заключается в возможности использования как очень богатых, так и очень бедных топливных смесей, в снижении выброса NOx в атмосферу. 6 з.п. ф-лы, 4 ил.

 


Наверх