Патенты автора Вертянов Денис Васильевич (RU)

Настоящее изобретение относится к приборостроению, а именно к технологии производства пластичных электронных устройств и межсоединений, которые обладают способностью компенсировать большие деформации (растяжение и сжатие), сохраняя при этом функциональное состояние, и способу получения таких пластичных устройств и межсоединений для технологии производства радиоэлектронных узлов. Технический результат - снижение трудоемкости изготовления, расширение функциональных возможностей и повышение надежности пластичных радиоэлектронных узлов и межсоединений. Достигается тем, что способ изготовления пластичных радиоэлектронных узлов и межсоединений включает изготовление жесткого основания в виде опорного металлического кольца. Далее закрепляют металлическую фольгу на опорном металлическом кольце. Наносят фоточувствительный материал на одной стороне металлической фольги и формируют в этом слое топологический рисунок фотолитографией. После этого наносят первый слой кремнийорганического полимера на сформированный фотолитографией рисунок. Затем формируют топологический рисунок фотолитографией на другой стороне металлической фольги и травят насквозь металлическую фольгу. В завершении наносят второй слой кремнийорганического полимера на полученный топологический рисунок. 11 ил.

Изобретение относится к технологии производства многокристальных модулей, микросборок с внутренним монтажом компонентов. Технический результат - уменьшение трудоемкости изготовления, расширение функциональных возможностей и повышение надежности микроэлектронных узлов. Достигается тем, что в способе изготовления микроэлектронного узла на пластичном основании перед установкой бескорпусных кристаллов и чип-компонентов соединяют круглую пластину по внешней ее части с опорным металлическим кольцом, наносят тонкий слой кремнийорганического полимера. Устанавливают бескорпусные кристаллы чип-компоненты, ориентируясь на ранее сформированный топологический рисунок, герметизируют кремнийорганическим полимером, достигая толщины полимера равной высоте кольца. Удаляют основание - круглую металлическую пластину, закрепляют дополнительную круглую металлическую пластину с обратной стороны микроэлектронного узла. Проводят коммутацию методом вакуумного напыления металлов или фотолитографией. Наносят слой диэлектрика, второй слой металлизации, защитный слой кремнийорганического полимера. Наносят паяльную пасту на выходные площадки микроэлектронного узла, удаляют дополнительную круглую металлическую пластину с кольцом - проводят вырезку микроэлектронного узла из технологической оснастки. 1 ил.

Изобретение относится к приборостроению, а именно к технологии производства многокристальных модулей, микросборок и модулей с внутренним монтажом компонентов. Технический результат - снижение массы и габаритов, уменьшение трудоемкости и повышение надежности электронных узлов. Достигается тем, что в способе изготовления электронного узла вместо корпусных компонентов применяют бескорпусные кристаллы, в качестве основания используют пластину монокристаллического кремния. Формируют в ней сквозные окна с линейными размерами, соответствующими линейным размерам устанавливаемых в них бескорпусных кристаллов. Закрепляют с одной стороны основания липкую ленту, клеящейся стороной к поверхности основания. Устанавливают в сквозные окна кристаллы лицевой стороной к клеящейся стороне липкой ленты. Герметизируют полиимидным лаком. Затем формируют отверстия в слое полиимидного лака так, чтобы вскрыть контактные площадки кристалла. Для формирования топологии и коммутации слоев используют вакуумно-плазменное осаждение металлов через тонкую съемную маску со сформированной на ней топологией или используют процессы фотолитографии после вакуумно-плазменного осаждения металлов. 1 ил.

Изобретение относится к технологии производства многокристальных модулей, микросборок и модулей на основе печатных плат с внутренним монтажом компонентов. Технический результат - создание способа производства максимально компактных, надежных, быстродействующих и более экономичных в изготовлении электронных узлов радиоэлектронной аппаратуры за счет отсутствия процессов пайки и сварки в изготовлении электронных узлов. Достигается за счет изготовления электронных узлов радиоэлектронной аппаратуры на гибком носителе и включает формирование рисунка на фольгированном полимере методом фотолитографии, установку бескорпусных кристаллов активной стороной вниз и чип-компонентов на основание с помощью полимерного лака, герметизацию, получение отверстий в полимерной структуре до выводов электронных компонентов методом плазмохимического травления, монтаж компонентов методом магнетронного напыления металлов в вакууме, наращивание необходимого количества слоев методами фотолитографии по полимерному фотолаку, формирование крупных внешних контактных площадок для возможности последующего монтажа на печатные платы из любого материала, как стеклотекстолита, так и из керамики, полиимида и других материалов. 13 ил.

Изобретение относится к электронной технике и может быть использовано для поверхностного монтажа микроэлектронных компонентов в многокристальные модули, микросборки и модули с внутренним монтажом компонентов. Технический результат - уменьшение трудоемкости и повышение надежности микроэлектронных узлов, снижение их массогабаритных параметров. Достигается тем, что в металлической круглой пластине по заданным координатам формируют отверстия под бескорпусные кристаллы. На одну из внешних поверхностей металлической круглой пластины натягивают липкую ленту липкой стороной внутрь пластины. Бескорпусные кристаллы устанавливают по заданным координатам контактными площадками на поверхность липкой ленты, герметизируют, отделяют липкую ленту. Наносят полиимидный фотолак, формируют в нем отверстия. Проводят коммутацию методом вакуумного напыления металлов через тонкую съемную маску или используют процессы фотолитографии после вакуумно-плазменного осаждения металлов. Повторно наносят слой диэлектрика и формируют в нем окна. Наносят последний слой металлизации, формируют коммутацию с контактными площадками и устанавливают чип компоненты. 7 ил.
Изобретение может быть использовано при изготовлении гибких микропечатных плат, применяемых при изготовлении вторичных преобразователей микромеханических акселерометров, микрогироскопов, интегральных датчиков давления. Технический результат - получение высокоплотного монтажа при ширине электропроводящих дорожек менее 50 мкм, сокращение технологического цикла. Достигается тем, что в способе изготовления гибкой микропечатной платы предварительно окисляют пластину монокристаллического кремния толщиной 20-100 мкм, диаметром 200-300 мм, <100> ориентации. Затем наносят покрытия. Проводят фотолитографию. Покрывают полученную электронную схему слоем полимера. Проводят растворение пленки двуокиси кремния с последующим отслоением кремниевой пластины. При этом образуется гибкая микропечатная плата на полимерной пленке.
Изобретение относится к термостойким адгезивам для соединения кристаллов и металлов с полиимидным основанием. Адгезивы (составы) содержат в качестве полимерного связующего новый преполимер - поли(о-гидроксиамид) - продукт реакции поликонденсации 3,3′-дигидрокси-4,4′-диаминодифенилметана и 1,3-бис-(аминопропил)-тетраметилдисилоксана с изофталоилхлоридом. При подготовке адгезива для применения осуществляют выдержку реакционного раствора, содержащего каталитические количества HCl, при 180-200°C течение 30-40 мин. Соединение кристалла или металла с полиимидным основанием осуществляют при 200-270°C в течение 30-40 мин. Сформированные из предлагаемых адгезивов пленки образуют высокотермостойкие гидрофобные клеевые слои, не содержащие пузырей, причем термическая обработка этих слоев осуществляется при температурах 200-270°C, что не вызывает окисления металлов в металлической разводке по кристаллу.
Изобретение относится к области приборостроения и радиоэлектроники и может быть использовано при изготовлении гибких микропечатных плат, применяемых при изготовлении вторичных преобразователей микромеханических акселерометров, микрогироскопов, интегральных датчиков давления и других изделий. Технический результат - получение высокоплотного монтажа при ширине электропроводящих дорожек менее 50 мкм, сокращение технологического цикла - достигается тем, что в способе изготовления гибкой микропечатной платы предварительно окисляют пластину монокристаллического кремния толщиной 20-100 мкм, диаметром 200-300 мм, <100> ориентации, предварительно окисленную до толщины окисла 1-2 мкм, с последующим снятием окисла с одной стороны, а после нанесения покрытий и проведения фотолитографии проводят вытравление кремниевой пластины с двуокисью кремния и последующим отделением полимерной пленки с электропроводящей схемой и металлорезестивным покрытием.

 


Наверх