Патенты автора Ясовеев Васих Хаматович (RU)

Изобретение относится к области нефтедобычи, в частности к системам диагностики скважинных штанговых насосных установок. Сущность изобретения состоит в том, что сравнивают эталонное значение среднеквадратического отклонения полной мощности и значение среднеквадратического отклонения полной мощности, определенное из произведения действующих значений тока и напряжения, вычисленных с учетом условия минимального или максимального смещения штока от точки подвеса и условия не равенства нулю производной значения давления, вычисленных по значениям перемещения штока и давления. Уменьшается погрешность измерения потерь энергии из-за неуравновешенности станка-качалки. 1 ил.

Изобретение относится к области двигателестроения. Технический результат: обеспечение надежного обнаружения вибрационного горения для предотвращения нерасчетной работы и поломки двигателя. Регистрацию изменения частот колебаний параметров газодинамического движения производят датчиком, чувствительным к электромагнитному излучению продуктов горения в камере сгорания, определяют спектральную плотность в спектре мощности временной реализации этого сигнала, сравнивают с эталонным значением спектральной плотности и в случае превышения определяемого параметра заданного эталонного значения определяют частоту, на которой произошло превышение, сравнивают эту частоту со значениями частот вибрационного горения данной камеры сгорания и вырабатывают сигнал в систему контроля двигателя о наличии вибрационного горения. 2 ил.

Изобретение относится к области геофизики и может быть использовано для проведения калибровочных операций инклинометрических систем с трехкомпонентными феррозондовыми и акселерометрическими датчиками. Технический результат – уменьшение погрешности измерений инклинометрических систем. Сущность изобретения заключается в том, что магниточувствительный блок магнитометра инклинометрической системы устанавливают на поворотном столе так, что продольная ось одного из преобразователей оказывается совмещенной с вертикалью, а продольные оси двух других преобразователей оказываются лежащими в горизонтальной плоскости, искомые углы вычисляют в виде функций результатов преобразований. При этом также определяют углы отклонения гравичувствительных осей трехкомпонентного акселерометрического преобразователя, входящего в состав инклинометрической системы, от его собственных геометрических осей ортогонального базиса. Для этого на поворотном столе задают шесть пространственных положений корпуса скважинного прибора инклинометрической системы с трехкомпонентными акселерометрическими и феррозондовыми датчиками, характеризующихся визирным углом ϕ, зенитным углом θ и азимутальным углом α=0°. По измеренным сигналам с датчиков вычисляют шесть углов отклонения магниточувствительных осей феррозондов трехкомпонентного магнитометра и пять углов отклонения гравичувствительных осей трехкомпонентного акселерометрического преобразователя. 3 ил., 1 табл.

Изобретение относится к области бурения наклонно направленных и горизонтальных скважин, в частности к определению угловых параметров пространственной ориентации бурового инструмента (азимута, зенитного угла и угла установки отклонителя в апсидальной плоскости). Технический результат: уменьшение погрешности измерений инклинометрических систем за счет учета малых угловых параметров отклонения осей чувствительности трехкомпонентных феррозондовых и акселерометрических датчиков инклинометрических систем от ортогональных осей при обработке результатов измерений. Сущность изобретения: в корпусе скважинного прибора устанавливают трехосевой блок акселерометр/магнитометр, с помощью которого осуществляют измерение проекций gx, gy, gz известного вектора ускорения силы тяжести, измеряют проекции mx, my, mz полного вектора напряженности геомагнитного поля, по которым определяют азимут α, зенитный θ и визирный ϕ углы. При этом используют априорно определенные численные значения малых угловых параметров отклонения осей чувствительности датчиков: χА, δХА, δYА, σ1А, σ2А для трехосевого акселерометра и χF, γF, δXF, δYF, σ1F, σ2F для трехосевого магнитометра. 2 ил., 2 табл.

Изобретение относится к авиационной технике, в частности к средствам защиты двигателей самолетов от неконтролируемого превышения частоты оборотов вала. Технический результат: повышенная помехозащищенность, высокая точность измерения частоты. Устройство защиты двигателя от раскрутки, состоящее из двух разнородных каналов измерения частоты, содержащих формирователи импульсов, соединенные с цифровой схемой сравнения и микроконтроллером, которые в свою очередь последовательно соединены с логической схемой выдачи результата на исполнительный механизм, содержит в каждом канале ограничители напряжения, включенные последовательно между фильтрами низких частот и формирователями импульсов, а также содержит дополнительный блок контроля напряжения с датчика, соединенный с микроконтроллером и датчиком частоты вращения. 1 ил.

Группа изобретений относится к области медицины и может быть использована для диагностики наличия инфекции Helicobacter pylori у пациента по выдыхаемому воздуху. Для этого у пациента проводят определение содержания аммиака с сопутствующими органическими аминами в воздухе ротовой полости в период активного гидролиза мочевины в интервале с 1 до 9-й мин после приема мочевины. При этом используют несколько датчиков газа, которые подбирают таким образом, чтобы чувствительность каждого вспомогательного датчика к газу, к которому перекрестно чувствителен основной датчик, была выше чувствительности основного датчика к данному газу. Основным датчиком является датчик, чувствительный к аммиаку, а вспомогательными - датчики, чувствительные к парам спирта и летучим органическим соединениям. Показания основного датчика корректируют с учетом показаний вспомогательных датчиков и по скорректированным показаниям судят о степени инфицированности пациента бактерией Helicobacter pylori. Группа изобретений относится также к устройству для реализации указанного способа. Группа изобретений позволяет уменьшить погрешность измерения концентрации аммиака в выдыхаемом пациентом воздухе, вносимой воздействием на датчик примесных газов. 2 н.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к измерительной технике и может быть применено в системах измерения линейного перемещения в заявленном устройстве и способе, реализующем указанное устройство. Сущность изобретения заключается в том, что проводят калибровку, при которой перемещают лазерный излучатель, жестко соединенный с подвижным элементом магнитострикционного преобразователя линейных перемещений. При этом лазерный излучатель проецирует метку на эталонную шкалу, расположенную параллельно магнитострикционному преобразователю линейного перемещения. Положение метки на эталонной шкале регистрируют цифровым микроскопом. После этого рассчитывают расстояние от начала координат эталонной шкалы до центра лазерной метки. Для этого цифровым микроскопом делают не менее 5 снимков (всей шкалы измерения, всей шкалы измерения с меткой в первом положении, участка в районе метки в первом положении, всей шкалы измерения в районе метки во втором положении и участка в районе метки во втором положении). Полученные снимки загружают в персональный компьютер. Далее на эти снимки накладывают цифровые шкалы, после чего производят расчет параметров линейных перемещений. Технический результат - повышение точности измерения линейного перемещения за счет коррекции составляющей погрешности, вызванной аппаратной задержкой. 2 н.п. ф-лы, 10 ил.

Изобретение относится к нефтепромысловой геофизике и может быть использовано в процессе акустического каротажа. Согласно заявленному изобретению обеспечивается моделирование реального акустического волнового сигнала и полное дистанционное тестирование прибора акустического каротажа в полевых условиях путем разложения входного акустического волнового сигнала на спектральные составляющие и сравнение полученной спектральной характеристики с эталонной спектральной характеристикой. Технический результат: повышение точности данных каротажа посредством обеспечения дистанционного тестирования для приборов акустического каротажа в полевых условиях. 2 ил.

 


Наверх