Патенты автора Герасимов Сергей Алексеевич (RU)

Изобретение относится к машиностроению, в частности к способу ионоазотирования деталей машин с использованием импульсов электромагнитного поля. Обеспечивают подачу в камеру для азотирования реакционного газа, его нагрев с одновременным генерированием в камере переменного электромагнитного поля посредством соленоида. Внутри соленоида располагают обрабатываемую деталь с направлением вектора магнитной индукции перпендикулярно обрабатываемой поверхности детали и изменением в процессе азотирования его величины с формированием прямоугольных импульсов, длительность и периодичность которых обеспечивает ускорение движения и внедрения ионов азота в обрабатываемую поверхность за счет вертикального фронта нарастания напряженности магнитного поля. Устройство для осуществления упомянутого способа содержит камеру для азотирования детали, устройство для подачи реакционного газа в упомянутую камеру на обрабатываемую деталь, нагревательное устройство и устройство для генерирования электромагнитного поля. Устройство для генерирования электромагнитного поля выполнено в виде расположенного вокруг упомянутой камеры соленоида, обеспечивающего генерирование импульсного электромагнитного поля с прямоугольными импульсами с направлением вектора магнитной индукции перпендикулярно обрабатываемой поверхности находящейся внутри него детали. Обеспечивается одновременное ускорение процесса азотирования и повышение механических свойств приповерхностных слоев материала, формирующихся в результате одновременного азотирования и воздействия как на ионы азота, так и на материал обрабатываемой детали импульсами сравнительно маломощного магнитного поля. 2 н. и 2 з.п. ф-лы, 3 ил.
Изобретение относится к машиностроению, в частности к способу комбинированной химико-термической обработки деталей машин. Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей включает циклическую цементацию деталей и закалку. Перед циклической цементацией проводят предварительные термообработку и механообработку, включающие нормализацию при температуре 950°С, высокий отпуск при температуре 670°С, закалку от температуры 1010°С, высокий отпуск при температуре не менее 570°С и пластическую деформацию методом осадки при температуре не менее 700°С со степенью деформации 50…80%. Циклическую цементацию проводят с чередованием циклов насыщения и диффузионной выдержки, при этом осуществляют не менее 12 циклов продолжительностью не менее 30 минут. Количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2. После упомянутой цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70°С и трехкратный отпуск при 510°С. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 480…500°С в течение не менее 10 часов при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В, плотность тока 0,20…0,23 мА/см2, состав газовой среды - азотоводородная смесь с 95% азота и 5% водорода, расход газовой смеси до 10 дм3/ч, давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа. Обеспечивается повышение износостойкости приповерхностных слоев теплостойкой стали, формирующихся в результате цементации и азотирования, и увеличение долговечности узлов трения скольжения из материала с таким составом приповерхностного слоя. 1 пр.

Изобретение относится к машиностроению, в частности к способам повышения механических свойств приповерхностных слоев деталей машин из сплавов на основе железа с получением субмикро- или наноструктурированного состояния диффузионных слоев. Способ включает сборку пакета из попеременно чередующихся стальных листов, имеющих различный химический состав, вакуумирование и нагрев пакета, горячую деформацию пакета по высоте при температуре, находящей между значениями температур полиморфных превращений обоих сплавов, при этом после горячей деформации из пакета вырезают заготовки деталей таким образом, чтобы при последующем азотировании направление межслойных границ в заготовке детали совпадало с направлением диффузионного потока азота, после чего проводят азотирование с получением субмикро- и наноструктурированного состояния диффузионного приповерхностного слоя на поверхности детали. Способ позволяет повысить механические свойства приповерхностных слоев материала, формирующихся в результате азотирования, и, соответственно, увеличить долговечность деталей. 9 ил., 1 пр.

Изобретение относится к машиностроению, в частности к способу азотирования деталей узлов трения скольжения с получением наноструктурированного приповерхностного слоя. Проводят предварительную термообработку деталей путем закалки при температуре 920-940°C, последующего высокого отпуска с нагревом до 600-650°C в течение 2-10 часов и удаления обезуглероженного слоя. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 500-570°C при напряжении на катоде 300-320 B, плотности тока 0,20-0,23 мА/см2, при использовании в качестве газовой среды аммиака со степенью диссоциации от нуля до 80%, расходе аммиака до 20 дм3/ч, давлении в камере при катодном распылении 1,3-1,35 Па, при насыщении 5-8 ГПа. Указанное азотирование проводят в режиме циклического изменения температуры и степени диссоциации аммиака, при этом в первой половине цикла температура составляет 570°C при максимальном азотном потенциале, а во второй половине цикла температуру снижают до 500°C, при этом азотный потенциал снижают за счет увеличения степени диссоциации аммиака до 40-80%, при этом число упомянутых циклов должно быть не менее 10. Азотированная деталь имеет приповерхностный слой, содержащий диффузионный слой с α-фазой с наноразмерными некогерентными нитридами легирующих элементов, которая образует мягкую матрицу, и поверхностный слой с твердыми включениями, представляющими собой наночастицы нитридов железа ε-фазы, сформированные путем фазовой локальной перекристаллизации решеток нитридов железа, которая обеспечивается циклическим изменением температуры азотирования и степени диссоциации аммиака. Обеспечивается повышение износостойкости приповерхностных слоев материала и увеличивается долговечность узлов трения скольжения из материала с таким составом приповерхностного слоя. 2 н.п. ф-лы, 1 табл., 2 ил.

 


Наверх