Патенты автора Кицюк Евгений Павлович (RU)

Изобретение относится к области электротехники, в частности к способам создания электропроводящих материалов на основе углеродных наноматериалов, и может быть использовано для создания электропроводников в сенсорике, микроэлектронике и источниках электрической энергии. Технический результат заключается в увеличении термической стойкости из-за отсутствия полимерного связующего в составе электропроводящего слоя, улучшении твердости и электропроводности формируемых слоев за счет формирования контактов между УНТ в присутствии ОГ в процессе сварки. Для достижения вышеуказанного технического результата способ формирования электропроводящего слоя на основе ОГ и УНТ включает следующие операции: окислительную обработку УНТ, изготовление суспензии ОГ и УНТ, формирование слоя путем нанесения суспензии ОГ и УНТ на нагретую подложку и облучение сформированного слоя из ОГ и УНТ лазерным излучением в импульсном режиме. 9 з.п. ф-лы, 3 ил., 1 табл., 2 пр.

Изобретение относится к оптическим сенсорам и может быть использовано для детектирования различных веществ или иных наноразмерных объектов и определения концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света. Устройство усиления комбинационного рассеяния света включает: твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, отражающий слой, первый оптически прозрачный слой, SERS-активный слой, выполненный из массива наночастиц, второй оптически прозрачный слой, расположенный поверх SERS-активного слоя, и второй SERS-активный слой, отделенный от первого SERS-активного слоя вторым оптически прозрачным слоем. Второй SERS-активный слой выполнен из массива наночастиц со средним размером, равным или меньше, чем у первого SERS-активного слоя. Технический результат изобретения заключается в повышении чувствительности SERS-подложки и расширении номенклатуры изучаемых веществ. 10 з.п. ф-лы, 2 ил.

Использование: для создания тензорезисторных датчиков деформации. Сущность изобретения заключается в том, что униполярный датчик деформации содержит гибкую подложку, стекловолокно, на котором нанесена смесь углеродных нанотрубок и графитового порошка, при этом содержит слой толщиной 5-15 мкм из композиционного тканеинженерного наноматериала в составе акриловой краски и одностенных углеродных нанотрубок с концентрацией 2-3 мас. %. Технический результат: обеспечение возможности повышения чувствительности и влагоустойчивости. 1.з.п. ф-лы, 3 ил.

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке диэлектрического слоя, формирование маски для травления диэлектрического слоя и электропроводящей подложки, формирование матрицы отверстий в диэлектрическом слое и углублений в подложке, формирование слоя катализатора для выращивания углеродных нанотрубок, удаление маски, формирование маски для травления слоя катализатора, жидкостное химическое травление слоя катализатора с образованием областей катализатора внутри углублений в электропроводящей подложке для последующего выращивания углеродных нанотрубок, удаление маски, плазмохимическое осаждение второго диэлектрического слоя, магнетронное осаждение вытягивающего слоя, формирование маски для травления структуры, состоящей из вытягивающего и второго диэлектрического слоев, над ранее сформированными областями катализатора внутри углублений в подложке для последующего выращивания углеродных нанотрубок, плазмохимическое анизотропное травление с образованием отверстий в вытягивающем и диэлектрическом слоях до формирования сквозного отверстия, удаление маски, изотропное газофазное травление второго диэлектрического слоя до вскрытия катализатора, парофазный синтез углеродных нанотрубок на катализаторе. Технический результат - предотвращение замыкания между УНТ и вытягивающим электродом, уменьшение токов утечки, повышение тока эмиссии, повышение теплоотвода с углеродных нанотрубок, повышение технологичности изготовления, надежности и увеличение выхода годных. 4 ил.

Изобретение относится к приборам твердотельной и вакуумной электроники, в частности к автоэмиссионным элементам на основе системы Si-SiC-графен, используемых в качестве катодов: к диодам, к триодам и к устройствам на их основе. Технический результат - повышение тока автоэмиссии и временной стабильности этой величины, уменьшение рабочих напряжений в приборах вакуумной микроэлектроники на основе углеродосодержащих материалов и, как следствие, продление их срока службы. Матричный автоэмиссионный элемент с катодами на основе системы Si-SiC-графен включает монокристаллическую кремниевую подложку, на лицевой поверхности которой сформирован катодный узел в виде многоострийных эмиссионных структур, имеющих форму конуса, на кончике эмиссионной структуры сформированы пленки нижележащего карбида кремния и графена, контактный слой, сформированный на обратной поверхности полупроводниковой подложки, состоящий из адгезионного слоя, расположенного на обратной поверхности полупроводниковой подложки, и токоведущего слоя, расположенного на поверхности адгезионного слоя. 2 н.п. ф-лы, 4 ил.

Изобретение относится к способу изготовления радиоприемного устройства с применением углеродных нанотрубок. Технический результат заключается в повышении стабильности работы и срока службы радиоприемного устройства с применением углеродных нанотрубок. Способ изготовления радиоприемного устройства с углеродными нанотрубками включает формирование диэлектрического слоя 2 на поверхности подложки 1, формирование электрически развязанных между собой катода 3, анода 4, радиоэлектрода и управляющего электрода с контактными площадками и с расположением их торцов по сторонам прямоугольника, формирование области каталитического слоя 7 на поверхности катода 3, примыкающей к его торцу, покрытие защитным слоем 8 каталитического слоя 7, за исключением боковой грани, примыкающей к торцу катода 3, формирование углубления в диэлектрическом слое и подложке с примыканием торцов электродов к нему проекционной фотолитографией и реактивным ионным плазменным травлением, выращивание массива углеродных нанотрубок 9 путем плазмо-химического осаждения из газовой фазы на боковой грани каталитического слоя 7, нанесенного на катод 3, обращенной к углублению, сращивание полученной структуры и герметизирующей пластины с помощью стеклянного припоя. 10 з.п. ф-лы, 11 ил.

Изобретение относится к области биомедицинской техники. Описан способ получения наноструктурированного композиционного электропроводящего покрытия, включающий нанесение ультрадисперсионной суспензии из карбоксиметилцеллюлозы и углеродных нанотрубок на подложку, затем суспензию облучают лазером до полного высыхания в непрерывном режиме длиной волны генерации 0,81-1,06 мкм, интенсивностью облучения 0,1-2 Вт/см2, время облучения 10-100 с, и высохший материал подвергают термообработке путем его отжига в воздухе при температурах 40-150°С в течение 30 мин. Достигается повышение удельной электропроводности покрытия более чем в 50 раз при совместном проведении воздействия лазерного излучения и термической обработки. 1 табл., 1 пр.

Изобретение относится к датчикам оптического излучения. Чувствительный элемент оптического датчика содержит подложку 1, массив углеродных нанотрубок 2, электропроводящий слой 3, диэлектрический слой 4, а также верхний оптически прозрачный слой 5. В подложке 1 выполнено углубление 6, в котором на слое алюминия или оксида алюминия 7 сформирован массив углеродных нанотрубок 2. На поверхности подложки 1 за исключением места углубления 6 сформирован диэлектрический слой 4, над которым сформирован электропроводящий слой 3. Электропроводящий слой 3 образует электрический контакт с боковой поверхностью массива углеродных нанотрубок 2. Массив углеродных нанотрубок 2 имеет электрический контакт с подложкой 1 через слой алюминия или оксида алюминия 7. Верхний оптически прозрачный слой 5, обеспечивающий герметизацию массива углеродных нанотрубок, может быть выполнен как по всей поверхности, так и только в области массива углеродных нанотрубок 2. Технический результат заключается в повышении надежности функционирования чувствительного элемента оптического датчика без уменьшения чувствительности оптического датчика за счет исключения влияния внешних факторов окружающей среды на функционирование датчика. 7 з.п. ф-лы, 2 ил.
Заявляемое изобретение относится к области электрической техники, в частности к способам создания электропроводящих слоев, применяемых в широких областях техники, в том числе в электронике или электротехнике, и может быть использовано для создания проводящих соединений в микросхемах. Способ формирования электропроводящих слоев на основе углеродных нанотрубок включает нанесение на подложку суспензии, содержащей углеродные нанотрубки и раствор карбоксиметилцеллюлозы в воде при следующем соотношении компонентов, мас.%: карбоксиметилцеллюлоза 1-10 и углеродные нанотрубки 1-10, сушку при температуре от 20 до 150°С, пиролиз при температуре выше 250°С. Технический результат заключается в повышении электропроводности формируемых слоев. 3 з.п. ф-лы, 1 табл.

 


Наверх