Патенты автора Пушко Сергей Вячеславович (RU)

Изобретение относится к конструкции системы электроснабжения (СЭС) околоземных космических аппаратов (КА) и может быть использовано при проектировании и создании систем электроснабжения автоматических околоземных низкоорбитальных КА на основе солнечных батарей (СБ) и аккумуляторных батарей (АБ). Система электроснабжения КА содержит аккумуляторную батарею (АБ), выполненную из электрически подключенных последовательно аккумуляторных модулей (AM), состоящих из соединенных параллельно единичных аккумуляторов или пар единичных аккумуляторов; бортовую нагрузку, подключенную к выходу АБ; солнечных батарей (СБ). СБ выполнены из нескольких электрически соединенных параллельно солнечных генераторов и подключены через блокирующее устройство (БУ) к соответствующему AM. Солнечные генераторы состоят из последовательно соединенных фотоэлектрических преобразователей. БУ размещены на термостатируемой панели совместно с соответствующими AM и выполнены в виде установленных на едином основании электрически соединенных по параллельной или последовательно-параллельной схеме полупроводниковых диодов, препятствующих протеканию обратных токов от AM в СБ. Параллельно каждому АМ через коммутирующее устройство подключен блок защиты аккумуляторного модуля от перезаряда. Повышается надежность СЭС. 12 з.п. ф-лы, 9 ил.

Изобретение относится к электрическому оборудованию, в частности к полупроводниковым приборам, а именно к фотопреобразователям. Способ изготовления фотопреобразователя включает создание на германиевой подложке с выращенными эпитаксиальными слоями трехкаскадной структуры GaInP / GaInAs / Ge фоторезистивной маски с рисунком лицевых контактов, напыление лицевых контактов, удаление фоторезиста, напыление слоев тыльной металлизации, отжиг контактов, напыление просветляющего покрытия, резка структуры в размер. Предварительно проводят травление германиевой подложки, затем напыление лицевых и тыльных контактов слоями титана толщиной 5÷10 нм, золота толщиной 100÷120 нм, серебра толщиной 5+6 мкм, золота 200 нм (Ti / Au / Ag / Au). Причем напыление просветляющего покрытия с последующей стабилизацией проводят оксидными слоями Та2О5 толщиной 55÷65 нм и SiO2 толщиной 40÷50 нм. При этом резку фотопреобразователей в размер проводят перед нанесением антиотражающего просветляющего покрытия. Изобретение обеспечивает сокращение времени изготовления фотопреобразователей и упрощение процесса создания контактов. 8 ил.

Изобретение относится к области электронной техники, а именно к полупроводниковым фотопреобразователям. Базовый модуль солнечной батареи включает прямоугольную подложку и расположенный на ней источник электроэнергии в виде одного или нескольких солнечных элементов с разнополярными выводами. Каждая из четырех боковых сторон подложки, расположенная по периметру вокруг источника электроэнергии, снабжена парой контактов. Разнополярные выводы присоединены к контактам таким образом, что контакты, расположенные друг против друга на одних из противоположных сторон подложки, имеют одинаковую полярность. Два других контакта, расположенные на других противоположных сторонах друг против друга, имеют различные полярности, причем оставшаяся пара контактов соединена между собой дополнительной нейтральной шиной. Каждая из четырех боковых сторон подложки, расположенных по периметру вокруг источника тока, может иметь фиксаторы для присоединения последующих модулей. Фиксаторы могут быть выполнены в виде магнитов, а подложка в виде печатной платы. Изобретение обеспечивает возможность снижения трудоемкости при создании блока солнечной батареи, расширения диапазона тока и напряжения, подаваемого на подключаемые источники потребления, и сохранить работоспособность каждого солнечного элемента на весь срок его службы. 3 з.п. ф-лы, 4 ил.

Изобретение относится к методам металлографического анализа образцов стали и определения трехмерной топографии поверхности и ее структуры при помощи сканирующей зондовой микроскопии (СЗМ). Согласно способу проводится шлифовка, полировка и либо химическое, либо электрохимическое травление образца стали, а затем сканирование поверхности образца с помощью СЗМ. В качестве СЗМ могут использоваться атомно-силовые сканирующие (АСМ), а также сканирующие туннельные (СТМ) и оптические ближнепольные сканирующие (СБОМ), совмещенные с АСМ. По результатам сканирования для металлографического заключения производится идентификация и классификация структурных элементов образца в зависимости от их формы и глубины, которые связаны со скоростью травления этих структурных элементов, определяемой их строением. Технический результат - повышение разрешающей способности, точности и информативности металлографического анализа. 15 з.п. ф-лы, 5 ил.

 


Наверх