Патенты автора Мокрушин Валерий Вадимович (RU)

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала спектральным методом включает отбор и изготовление аналитической пробы, возбуждение и регистрацию аналитического сигнала, определение статистических показателей разброса аналитического сигнала для разных локальных зон каждой аналитической пробы в качестве показателей однородности. Дополнительно в качестве показателей однородности определяют масштабные границы области однородного поведения R1 и области микронеоднородного поведения R2 аналитического сигнала, а статистические показатели разброса аналитического сигнала определяют отдельно для каждой из разделяемых ими масштабных областей поведения аналитического сигнала. Способ определения масштабных границ однородности дисперсного материала спектральным методом заключается в том, что аналитический сигнал регистрируют при изменении размеров области их возбуждения в аналитическом объеме, получают зависимость интенсивности аналитического сигнала от размера области возбуждения, а о положении границы R1 области однородного поведения аналитического сигнала и границы R2 области микронеоднородного поведения аналитического сигнала судят по перегибам на кривой данной зависимости в соответствии с условиями, определяемыми из заданных соотношений для областей однородного, микронеоднородного и неоднородного поведения аналитического сигнала. Технический результат: расширение круга показателей однородности, что повышает точность и достоверность определения показателей однородности порошковой смеси. 2 н.п. ф-лы, 3 табл., 6 ил.

Изобретение относится к получению металлических порошков и может найти применение, в частности, в пиротехнике и химической технологии. В способе дезагрегирования порошка натриетермического циркония осуществляют обработку агрегированного порошка путем перемешивания в среде с водородным показателем рН>7 с получением диспергированного порошка, который затем отмывают до нейтрального значения водородного показателя среды. Отмывка диспергированного порошка может быть проведена водой. Отмывка диспергированного порошка может быть также проведена раствором с рН<7 при температуре 18-200°С, а затем водой. Обеспечивается разрушение агрегатов частиц порошка и уменьшение их количества, а также растворение мелкой фракции порошка натриетермического циркония и получение крупной фракции порошка циркония. 2 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к порошковой металлургии. Способ получения металлического порошка включает выбор исходного сырья и его измельчение с контролем удельной поверхности полученного порошка, при этом определяют удельную поверхность исходного сырья, а выбор сырья и его измельчение производят в соответствии с условием: , где Sуд.с - удельная поверхность исходного сырья (м2/г), Sуд.п - удельная поверхность полученного порошка (м2/г). Обеспечивается повышение качества порошков, выражающееся в стабилизации гранулометрических свойств, уменьшении морфологического разнообразия частиц, увеличении насыпной плотности и улучшении прессуемости, снижении пирофорности и чувствительности к трению. 4 з.п. ф-лы, 2 табл., 4 ил., 6 пр.

Изобретение относится к области химической технологии. Химически активный фильтрующий элемент, содержащий химически активный материал в виде порошка или гранул, распределенный по каркасу из пористого инертного металлического носителя, размещенного в пористой оболочке. Химически активный материал состоит из вещества, способного изменять объем твердой фазы за время эксплуатации. Пористый инертный металлический носитель выполнен из витой металлической проволоки с демпфирующими свойствами, расстояние между соседними витками проволоки не превышает минимальный размер частиц порошка или гранул активного материала. Активный материал равномерно распределен по площади поперечного сечения каркаса из пористого инертного носителя. Изготавливают химически активный фильтрующий элемент перемешиванием химически активного материала со вспомогательным инертным компонентом до получения однородной смеси. Из полученной смеси формируют твердую заготовку и располагают послойно между слоями пористого инертного металлического носителя внутри инертной пористой оболочки. Внедрение смеси в каркас пористого инертного металлического носителя производят под нагрузкой с последующим удалением инертного компонента. Технический результат: обеспечение стабильности свойств химически активного фильтрующего элемента; увеличение срока службы химически активного фильтрующего элемента; возможность полного извлечения химически активного материала по окончании срока службы. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области определения электрофизических параметров порошковых материалов, а также к области определения значений параметров, характеризующих физико-химические свойства материалов, по величине электрического сопротивления. Контактное устройство для определения электрического сопротивления порошкового материала при его сжатии содержит измерительную ячейку, включающую изоляционную втулку для размещения в ней образца исследуемого материала, подвижный и неподвижный цилиндрические электроды для сжатия образца и регистрации изменения его сопротивления, выполненные с заходной частью для размещения во втулке; узлы создания и измерения перемещения подвижного электрода. В устройстве новым является то, что узлы создания и измерения перемещения подвижного электрода конструктивно разъединены. При этом чувствительный элемент узла измерения кинематически связан с узлом создания перемещения. Заходная часть каждого электрода выполнена ступенчатой. Ступень, обращенная к образцу, выполнена меньшего диаметра с разгрузочной канавкой на ее наружной поверхности, а ступень большего диаметра выполнена для сопряжения с изоляционной втулкой. При этом длина L втулки, длина l1 заходной части электродов и длина l2 сопряженной ступени электродов в исходном состоянии выбраны из определенных геометрических условий. Для обеспечения возможности проведения измерительных операций с образцом порошкового материала, находящегося в инертной среде, измерительная ячейка установлена в герметизирующую трубку. Для улучшения эксплуатационных характеристик контактного устройства, связанных с возможностью визуализации образца и процесса его уплотнения, герметизирующая трубка и изоляционная втулка выполнены прозрачными. Техническим результатом изобретения является повышение точности и расширение диапазона измерений плотности, а следовательно, и повышение точности определения электрического сопротивления исследуемого порошкового материала. 2 з.п. ф-лы, 4 ил.

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося высокотемпературного синтеза, в материаловедении и физике твердого тела. В способе определения коэффициента диффузии измеряют электропроводность материала в исходном состоянии для определения начального содержания диффузанта в покрытии на его частицах. Затем подвергают материал в насыпном виде диффузионному отжигу, охлаждают и измеряют электропроводность для определения измененного содержания диффузанта в покрытии. Измерение электропроводности материала до и после отжига проводят при различной степени уплотнения, а также до и после отжига определяют толщину покрытия и показатель его целостности, с учетом которых определяют изменение содержания диффузанта в покрытии при постоянном значении его концентрации и определяют коэффициент диффузии по выражению, полученному решением уравнения Фика. Указанную последовательность действий повторяют при различных температурах отжига материала для получения температурной зависимости коэффициента диффузии, по которой в соответствии с законом Аррениуса определяют его постоянные параметры: предэкспоненциальный множитель и энергию активации. При осуществлении способа определения толщины и показателя целостности покрытия образец материала сжимают, измеряют его электропроводность при различной степени уплотнения, определяют электропроводность материала в беспористом состоянии. Дополнительно измеряют удельную поверхность материала и электропроводность материала без покрытия, определяют среднестатистическое координационное число проводящих контактов частиц. Затем рассчитывают относительную площадь проекции неэкранированной покрытием контактной поверхности частиц материала в беспористом состоянии, характеризующую целостность покрытия, и толщину покрытия. Техническим результатом является повышение точности и достоверности определения, упрощение способа, расширение области применения. 2 н.п. ф-лы, 7 ил.

 


Наверх