Патенты автора Рогачев Станислав Олегович (RU)

Изобретение относится к способу определения диаметра отверстия полой оправки на ее переднем торце для винтовой прошивки в трехвалковом стане. Осуществляют деформацию прокаткой в трехвалковом стане заготовки, диаметр которой равен диаметру заготовки при прошивке в трехвалковом стане с использованием упомянутой полой оправки. После упомянутой прокатки заготовки вдоль ее радиуса выбирают не менее 7 точек с равным расстоянием между ними. Измеряют твердость в этих точках и данные результаты измерений отображают в системе координат. После нанесения точек в этой же системе координат строят линию тренда с использованием нанесенных точек, отображающую зависимость твердости материала заготовки от расстояния от центра, на полученной линии тренда находят точку минимума твердости заготовки и определяют расстояние от центра заготовки до упомянутой точки минимума. Умножают найденное расстояние на два и полученное значение принимают равным диаметру отверстия полой оправки на ее переднем торце. В результате обеспечивается совпадение диаметра отверстия полой оправки на переднем торце с диаметром ослабленной кольцевой зоны. 3 ил., 1 пр.

Изобретение относится к областям металловедения и обработки металлов. Способ создания трехмерной модели зерна металлоизделия включает следующие стадии: в интересующей области изделия делают два первичных шлифа, при этом плоскости шлифов перпендикулярны, оценивают размер зерна для каждого из шлифов, выбирают максимальную оценку размера зерна, в этой же области делается не менее 5 вторичных шлифов, параллельных плоскости одного из двух первичных шлифов, расстояние между первым и последним вторичным шлифом не меньше максимальной оценки размера зерна, определенной по результатам исследования двух первичных шлифов, определяют в каждом из вторичных шлифов сечения, соответствующие одному и тому же зерну, контуры сечений зерна строятся в системе автоматизированного компьютерного проектирования с учетом расстояния между вторичными шлифами и положением каждого из сечений в соответствующем вторичном шлифе, используя инструментарий меню системы автоматизированного компьютерного проектирования, по имеющимся сечениям строят трехмерную модель зерна изделия. Техническим результатом изобретения является получение трехмерной модели зерна материала. 11 ил.

Способ упрочняющей обработки инструмента из штамповых сталей относится к металлургии, в частности к способам термомеханической обработки штамповых сталей для горячего деформирования. Способ включает аустенизацию инструмента сталь после любого исходного режима термической обработки при температуре Ас3+250-350°С и охлаждение до 400-450°С с сохранением аустенитной структуры, выдержку в течение 15-20 мин, затем осуществляют 3-6-кратное пластическое деформирование рабочей зоны инструмента со степенью 1-2% за цикл для повышения плотности дислокаций в аустените и охлаждают до комнатной температуры, что приводит к частичному распаду аустенита. Последующий быстрый нагрев со скоростью 50-200°С/с на температуру деформации 750°С способствует дополнительному упрочнению стали за счет частичного α→γ-превращения при нагреве и осуществления деформации в двухфазной (α+γ)-области, после чего стабилизируют состояние горячего наклепа при последующем 3-6-кратном пластическом деформировании рабочей зоны инструмента. Техническим результатом изобретения является повышение эксплуатационной стойкости инструмента, применяемого для матриц горячего прессования трудно-деформируемых сплавов при температурах 750°С за счет увеличения предела текучести штамповой стали и стабилизации горячего упрочнения. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области черной металлургии, а именно к стали с регулируемым аустенитным превращением при эксплуатации, применяемой для штампов горячего прессования сплавов на основе меди при температурах 450-750°С. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,42-0,49, кремний 1,07-1,28, марганец 3,83-4,16, хром 1,55-1,89, никель 2,39-2,73, молибден 2,04-2,22, ниобий 0,12-0,18, титан 0,33-0,42, ванадий 0,55-0,71, железо остальное. Повышается степень деформационного упрочнения штамповой стали в процессе эксплуатации инструмента с одновременным сохранением высоких прочностных свойств в аустенитном состоянии при температуре 750°С, повышение стабильности переохлажденного аустенита и увеличение стойкости штампов. 2 табл., 1 пр.
Изобретение относится к области промышленных технологий получения композиционных материалов, а именно к деформационно-термической обработке композиционных материалов на основе металлов и сплавов. Способ получения композиционного материала, состоящего из внутреннего слоя из ванадиевого сплава V - 3-11 мас.% Ti - 3-6 мас.% Cr и двух наружных слоев из коррозионно-стойкой стали ферритного класса с содержанием хрома не менее 13 мас.%, включает подготовку композиционной заготовки, состоящей из упомянутых внутреннего слоя и наружных слоев, горячую обработку давлением и последующую выдержку в печи. Осуществляют подготовку композиционной заготовки, толщина внутреннего слоя которой в 1,5-2 раза больше, чем суммарная толщина наружных слоев из коррозионно-стойкой стали, проводят горячую обработку давлением упомянутой заготовки в диапазоне температур 1050-1150°С со степенью обжатия от 30 до 40% и с последующей выдержкой в течение 1-3 часов при снижении температуры до 500-700°С, затем осуществляют отжиг заготовки путем нагрева до температуры 850-950°С, выдержки в течение 2-4 часов и последующего охлаждения в печи. Указанные режимы получения обеспечивают формирование зоны диффузионного соединения между ванадиевым сплавом и сталью повышенной толщины размером 60-70 мкм, что при заданном соотношении толщин в исходной композиционной заготовке приводит к получению более высокого комплекса механических свойств композиционного материала. 2 з.п. ф-лы.
Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к азотированию сталей в газовой среде, и может быть использовано для упрочнения стальных деталей, работающих при относительно высоких температурах 500-7000С, в том числе в коррозионной среде. Высокотемпературному внутреннему азотированию подвергают изделия толщиной до 2 мм из ферритной стали, содержащей углерод до 0,2 вес.%, хром 12-25 вес.% и титан 0,5-3 вес.%. Азотирование проводят при температуре 1000-1200°С в среде чистого азота в течение 1-4 часов с последующим охлаждением на воздухе. Затем проводят отжиг при температуре 500-900°С в бескислородной среде в течение 1-5 часов с охлаждением с печью. Обеспечивается повышение прочности и жаропрочности сталей, работающих при температуре до 700°С, и упрощение процесса азотирования и термообработки. 1 пр., 1 табл.

 


Наверх