Патенты автора Ким Лев Владимирович (RU)

Предлагаемое изобретение относится к области измерений физических величин, в частности к теплофизическим измерениям свойств материалов, имеющих ярко выраженную температурную зависимость характеристик, таких как графит, карбиды и другие. Метод может найти применение при определении свойств композиционных материалов, которые используются в энергетике, авиационно-космической, химической и других отраслях техники. Способ определения коэффициента теплопроводности при температурах до 2800 К полупроводниковых, композиционных материалов, включающий нагрев образца, измерение значений силы тока I, падения напряжения U и истинной температуры внешней и внутренней поверхностей образца, отличающийся тем, что нагрев образца ведут путем косвенного нагрева, при теплопередаче излучением с графитового цилиндрического нагревателя-сердечника, помещенного внутрь цилиндрического канала образца с расстоянием между нагревателем-сердечником и внутренней поверхностью образца менее 0,5 мм, измеряют величину объемного тепловыделения центральной части сердечника и величины температур в точках образца, расположенных на внешней поверхности и на глубине в стенке канала, причем измерения осуществляются в условиях установившегося теплового режима на различных стадиях ступенчатого нагрева образца от комнатной температуры через ряд промежуточных, интересующих исследователя, температур до 2800 К, при этом расчетная формула для определения коэффициента теплопроводности получена на основе решения стационарного, одномерного уравнения теплопроводности в цилиндрической системе координат при известном тепловом потоке на внутренней поверхности образца λ=IUln(R0/(R0-h))/(2πL(Th-T0)), где I, U - сила тока и падение напряжения на нагревателе, R0 - внешний радиус цилиндрического образца, h - глубина отверстия в стенке образца, L - длина изотермического участка, Th, Т0 - температура на глубине h и на внешней поверхности образца. При этом образец представляет собой полый цельный цилиндр или набранный из колец шириной 20 мм и имеет специальные монтажные сквозные верхние и нижние отверстия, которые просверлены в центре изотермического участка, расстояние термостабильной зоны, расположенной между двумя верхними и двумя нижними монтажными отверстиями, где измеряется падение напряжения на сердечнике, составляет 20 мм. Технический результат заключается в возможности реализации в стационарных условиях для области высоких температур. Это отвечает максимальному приближению к реальным условиям работы высокотемпературных материалов. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к способам восстановления работоспособного состояния изношенных водопроводных трубопроводов, предпочтительно стальных. Способ включает осмотр трубопровода, очистку его от коррозии и наслоений, формирование несуще-силового слоя и нанесение грунтовочно-тампонажного слоя. При выявлении в процессе осмотра на внутренней поверхности трубопровода участков с износом большим 10%, на соответствующей им внешней поверхности, формируют наружный несуще-силовой слой. Сначала снаружи трубы формируют бандаж намоткой с натяжением по меньшей мере трех слоев ленты, выполненной из композитного волокна, например стекловолокна или базальтоволокна, и с пропиткой ее полимерным связующим, например композицией на основе эпоксидной смолы. Формирование на внутренней поверхности грунтовочно-тампонажного слоя осуществляют через сутки после формирования несуще-силового слоя. Толщину несуще-силового слоя задают переменной, с формированием на концах укрепляемого участка трубопровода утолщенных поясов в виде ребер жесткости. Техническим результатом является исключение разрушения стенок трубопровода при очистке и в процессе нанесения грунтовочно-тампонажного слоя. 2 з.п. ф-лы, 4 ил.

Изобретение предназначено для формирования защитного покрытия. Цементно-песчаный раствор, содержащий цемент, песок, микрокремнезем, суперпластификатор, подсмольную воду и воду, в качестве цемента содержит сульфатостойкий или глиноземистый цемент, песок имеет модуль крупности 1,5, в качестве суперпластификатора используется суперпластификатор СП-1 на основе продукта конденсации нафталинсульфокислоты с формальдегидом по ТУ 5870-005-58042865-05, в качестве подсмольной воды - продукт переработки каменных углей пиролизным способом, содержащий фенол, при следующем соотношении компонентов, мас.%: цемент - 35-40, песок - 38-43, микрокремнезем - 1-2, суперпластификатор - 0,10-0,15, подсмольная вода - 2,0-2,4, вода - остальное. Технический результат - получение цементно-песчаного раствора, который можно наносить способом центробежного набрызга на поверхность водопроводных трубопроводов с незначительным отскоком компонентов раствора, формирование слоя защитного покрытия, обладающего хорошими биоцидными и антикоррозийными свойствами, мелкопористой структурой, достаточной прочностью. 1 табл.

Изобретение относится к трубопроводному транспорту и предназначено для восстановления изношенных трубопроводов. Согласно изобретению в способе восстановления трубопровода при его осмотре выявляют участки с износом более 10%, формируют силовой слой на наружной поверхности изношенных участков, производят очистку внутренней поверхности изношенных участков и наносят грунтовочно-тампонажное покрытие на очищенную внутреннюю поверхность после достижения 70% проектной прочности наружного силового слоя. Достигаемый технический результат состоит в обеспечении прочности отремонтированных участков трубопровода с большим износом. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области строительства и может быть использовано в научных и производственных лабораториях для определения критического коэффициента интенсивности напряжения в образцах бетона, используемого, например, в железобетонных элементах зданий и сооружений. Сущность: образец-призму бетона в возрасте 28 суток или более, хранившегося в нормальных условиях, подвергают прогреву в электрической печи со скоростью подъема температуры в 2оС/мин до температуры от 100 до 700оС, после чего выдерживают в течение 4-х часов при максимальной температуре, затем после естественного остывания в печи в образце образуют зону концентрации напряжения путем нанесения двух симметричных надрезов на одной грани образца бетона, после чего образец нагружают до разрушения, замеряют разрушающую нагрузку. Определяют критический коэффициент интенсивности напряжения по формуле где Р – разрушающая нагрузка, MН; Y(l, b) – поправочный коэффициент; t – ширина образца, м; H – расстояние от надреза до грани образца, м; l - глубина надреза, l=b/4, здесь b - высота образца, м. Технический результат: повышение точности и достоверности определения критического коэффициента интенсивности напряжения путем образования зон концентраций напряжения в виде надрезов. 2 табл., 1 ил.

Изобретение относится к области строительства и может быть использовано в научных и производственных лабораториях для определения критического коэффициента интенсивности напряжения в образцах бетона, используемого, например, в железобетонных элементах зданий и сооружений. Сущность: в образце-призме бетона создают зону концентрации напряжения путем нанесения двух симметричных надрезов на одной грани образца бетона, после чего образец нагружают до разрушения, замеряют разрушающую нагрузку и определяют критический коэффициент интенсивности напряжения по формуле где Р – разрушающая нагрузка, MН; Y – поправочный коэффициент; t – ширина образца, м; H – расстояние от надреза до грани образца, м; l – глубина надреза l=b/4, здесь b – высота образца, м. Технический результат: повышение точности и достоверности определения критического коэффициента интенсивности напряжения путем образования зон концентраций напряжения в виде надрезов. 1 ил., 2 табл.

Изобретение относится к области строительных материалов, а именно к составам добавок, используемых в производстве бетонов и строительных растворов. Добавка в бетонные смеси и строительные растворы, включающая цитрат натрия трехзамещенный двуводный, который обработан при температуре 200°С в течение от 2 до 3 ч, при этом добавка дополнительно содержит сульфат алюминия при следующем соотношении компонентов, мас.%: цитрат натрия трехзамещенный технический безводный 75-80; сульфат алюминия 20-25. Технический результат - получение добавки в бетонные смеси и строительные растворы, повышающей сроки схватывания и набор прочности бетона в ранние сроки твердения, и повышение водонепроницаемости бетона. 2 табл.
Изобретение относится к пищевой промышленности, а именно к производству полуфабрикатов из теста. Способ производства полуфабрикатов из теста включает просеивание муки высшего сорта с высоким уровнем белизны не менее 58% и содержания клейковины не менее 28% и/или из сортов твердой пшеницы в мукопросеивателе с размером сита 1×1 мм, загрузку муки в тестомеситель с вакуумированием, туда же загружают яичный порошок и соль и перемешивают в сухом виде в течение 2-5 мин. После этого добавляют воду очищенную и, возможно, масло растительное, создают вакуум в тестомесителе и осуществляют замес теста в течение 5-10 мин при высоких оборотах и 5-15 мин при низких оборотах до образования гранул размером 5-12 мм. Затем гранулы подают на линейный аппарат по раскатке теста для получения пласта теста необходимой толщины, после этого тесто поступает на вырубку полуфабрикатов или в лапшерезку. Далее полуфабрикаты выдерживают в холодильной камере до достижения ими t 5-10°С, а после охлаждения полуфабрикаты пересыпают кукурузным крахмалом и упаковывают в вакуумную упаковку с наполнением их модифицированной газовой средой, при этом тесто замешивают при следующем соотношении ингредиентов (масс. %): мука 60-80, вода 15-32,5, яичный порошок 1-4,0, соль 0,15-3,00, масло растительное 0-0,5. Предлагаемый способ производства и упаковки полуфабриката из теста обеспечивает длительный срок хранения тестовых заготовок без снижения их качества. 2 н. и 1 з.п. ф-лы, 3 пр.

Изобретение относится к области дорожного строительства, а именно к оборудованию для испытаний материалов, в частности асфальтобетона, на усталость при циклических динамических воздействиях, и может быть использовано в автодорожном хозяйстве, строительстве аэродромов, строительной индустрии. Установка содержит каркас, подъемный стол, выполненный с возможностью изменения высоты, узел позиционирования балки-образца, узел нагружения балки-образца, выполненный с возможностью приложения циклической динамической нагрузки и возможностью измерения перемещений и нагружающего усилия, содержащий шатунно-ползунный механизм. Узел позиционирования балки-образца содержит зажимные захваты, установленные по концам балки-образца параллельно поперечной оси симметрии каркаса и промежуточное упругое основание, выполненное в виде емкости, заполненной модельным грунтом с возможностью плотного контактирования с обращенной к нему плоскостью балки-образца. Нагружающий элемент узла нагружения балки-образца выполнен с возможностью его позиционирования в середине балки-образца. Технический результат: повышение достоверности оценки параметров прочностной усталости асфальтобетона при циклических динамических воздействиях, а также снижение материалоемкости конструкции. 4 з.п. ф-лы, 2 ил.

 


Наверх