Патенты автора Дикамов Дмитрий Владимирович (RU)

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для перевода газовых и газоконденсатных скважин, в том числе обводненных, оснащенных лифтовой колонной, без глушения на эксплуатацию одновременно по центральной лифтовой колонне и затрубному пространству скважины, а также возврата к эксплуатации по одной лифтовой колонне. Способ включает спуск в скважину, оснащенную основной лифтовой колонной и нижней частью фонтанной арматуры, и подвеску центральной лифтовой колонны, установку верхней части фонтанной арматуры, проведение газодинамических исследований, пуск скважины в шлейф. Причем до спуска центральной лифтовой колонны на ее начало устанавливают верхний наконечник, к которому присоединяют пробку, а на конец устанавливают нижний наконечник, к которому присоединяют закрытый управляемый клапан. Перекрывают нижнюю коренную задвижку. Демонтируют часть фонтанной арматуры, расположенную выше крестовины для отвода газа из затрубного пространства, на которую затем последовательно устанавливают трубодержатель, надкоренную задвижку, превентор, герметизатор, инжектор. При этом между трубодержателем и надкоренной задвижкой устанавливают верхнюю коренную задвижку. В непосредственной близости от скважины устанавливают спускоподъемное устройство. Затем центральную лифтовую колонну монтируют в спускоподъемное устройство, пропускают нижним концом через инжектор и герметизатор. После чего герметизируют центральную лифтовую колонну. Затем открывают надкоренную задвижку. Центральную лифтовую колонну опускают до уровня нижней коренной задвижки. Открывают нижнюю коренную задвижку. Производят спуск центральной лифтовой колонны до положения, когда верхний наконечник с пробкой окажется на уровне верхнего торца инжектора. Присоединяют к пробке технологическую штангу. Разжимают уплотнительную манжету верхней камеры герметизатора, после чего опускают центральную лифтовую колонну до того положения, когда пробка окажется ниже уплотнительной манжеты верхней камеры герметизатора. После этого сжимают уплотнительную манжету верхней камеры герметизатора. Затем разжимают уплотнительную манжету нижней камеры герметизатора. После чего центральную лифтовую колонну опускают до положения, когда пробка окажется ниже уплотнительной манжеты нижней камеры герметизатора. После этого сжимают уплотнительную манжету нижней камеры герметизатора. Затем спускают центральную лифтовую колонну до совпадения посадочных поверхностей верхнего наконечника и трубодержателя. Фиксируют верхний наконечник в трубодержателе. После демонтируют спускоподъемное устройство, инжектор, герметизатор, превентор, а затем на надкоренную задвижку монтируют верхнюю часть фонтанной арматуры, включая крестовину для отвода газа из трубного пространства. Техническим результатом является повышение безопасности работы персонала при переводе скважины на эксплуатацию по двум лифтовым колоннам и обратно, обеспечение возможности безопасной передачи различных сигналов при эксплуатации скважины, снижение трудоемкости выполнения работ по извлечению пробки, расширение возможностей эксплуатации, в связи с обеспечением возможности изготовления центральной лифтовой колонны непосредственно вблизи скважины, проведения геофизических исследований и безопасного подъема центральной лифтовой колонны. 3 н. и 26 з.п. ф-лы, 9 ил.

Изобретение относится к коррозионным исследованиям. Способ включает остановку работы трубопровода, стравливание давления в трубопроводе. Проводят демонтаж защитной гильзы для датчика температуры из фитинга трубопровода, берут стержень, конец меньшего диаметра которого вставляют в шайбу и развальцовывают до жесткой фиксации шайбы на конце стержня, затем образцы-свидетели коррозии монтируют поочередно с изолирующими втулками на стержень и фиксируют прижимной и контрящей гайками, проводят измерение расстояния от нижней образующей внутренней поверхности трубопровода до верхней плоской поверхности фитинга, после чего стержень фиксируют в резьбовом соединении заглушки со стержнем с помощью контргайки к торцевой поверхности заглушки на такой глубине завинчивания, при которой расстояние от нижнего конца стержня до поверхности заглушки, контактирующей с уплотнительной шайбой, равно измеренному расстоянию от нижней образующей внутренней поверхности трубопровода до верхней плоской поверхности фитинга, контактирующей с уплотнительной шайбой, после чего собранный узел с уплотнительной шайбой вкручивают в фитинг. Технический результат - сокращение продолжительности установки образцов-свидетелей коррозии за счет уменьшения количества монтажных операций. 2 ил.

Изобретение относится к эксплуатации газовых скважин на завершающей стадии разработки и, в частности, к эксплуатации газовых скважин, в которых скорость газового потока недостаточна для выноса жидкости с забоя. По способу газовую скважину снабжают основной лифтовой колонной и концентрично размещенной в ней центральной лифтовой колонной с образованием кольцевого пространства между ними. Торец центральной лифтовой колонны размещают ниже торца основной лифтовой колонны. Отбор газа осуществляют одновременно по центральной лифтовой колонне и кольцевому пространству. Отбор газа по центральной лифтовой колонне ведут с дебитом, в полтора раза превышающим дебит, необходимый для выноса жидкости из нее. Дебит газа по кольцевому пространству задают такой величины, чтобы он не превышал значения рабочего дебита. Для регулирования дебита по центральной лифтовой колонне на пути потока межколонного кольцевого пространства устанавливают регулирующий штуцер. Вручную степенью открытия регулирующего штуцера задают давление на устье межколонного кольцевого пространства, необходимое для создания условий выноса по центральной лифтовой колонне жидкости в стволе скважины. Значение устанавливаемого давления определяют в зависимости от давления в газосборной сети согласно режимной карте скважины. Повышается эффективность работы скважины путем удаления накапливающейся на забое жидкости без применения сложных автоматизированных управляющих комплексов. 1 ил., 1 табл.

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. В способе подготовки углеводородного газа к транспорту газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора высокой концентрации, вводят в газовый поток метанол, охлаждают газовый поток на первом этапе воздухом, на втором этапе легким углеводородным конденсатом, на третьем этапе дважды отсепарированным газом. Затем проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток отсепарированным газом и за счет понижения давления, проводят окончательную сепарацию газового потока, в три ступени нагревают отсепарированный газ газовым потоком и выводят отсепарированный газ из установки. Жидкую фазу после окончательной сепарации газового потока направляют для разделения на легкий углеводородный конденсат, газ дегазации среднего давления и водометанольный раствор высокой концентрации. Возвращают газ дегазации среднего давления на повторную окончательную сепарацию совместно с газовым потоком, повышают давление водометанольного раствора высокой концентрации и направляют его для десорбции метанола, легкий углеводородный конденсат нагревают газовым потоком. В жидкую фазу после первичной сепарации газового потока вводят водный раствор после десорбции метанола, направляют газожидкостную смесь для разделения на тяжелый углеводородный конденсат, газ дегазации высокого давления и водный раствор, газ дегазации высокого давления вводят в газовый поток после понижения давления газового потока, отделяют от легкого углеводородного конденсата газ дегазации низкого давления и водометанольный раствор средней концентрации, вводят водометанольный раствор средней концентрации в водометанольный раствор высокой концентрации перед повышением давления, вводят в тяжелый углеводородный конденсат легкий углеводородный конденсат, направляют углеводородный конденсат для отделения газа выветривания низкого давления, выводят углеводородный конденсат из установки, направляют на эжекцию газ выветривания низкого давления, вводят в газ выветривания низкого давления жидкую фазу после вторичной сепарации газового потока. Водный раствор после десорбции метанола делят на две части, первую часть водного раствора после десорбции метанола вводят в жидкую фазу после первичной сепарации газового потока, вторую часть водного раствора после десорбции метанола вводят в легкий углеводородный конденсат после окончательной сепарации газового потока для сорбции метанола. Технический результат заключается в увеличении срока эксплуатации насосов подачи водометанольного раствора, уменьшении расхода метанола во время простоя насосов. 1 ил.

Изобретение относится к газовой промышленности, в частности к способам эксплуатации обводненных газовых скважин и транспортировке их продукции. Технический результат заключается в увеличении дебита газовой скважины и сокращении расхода ингибитора гидрато- и льдообразования за счет повышения гидравлической эффективности газосборного трубопровода и снижения его влияния на эксплуатационные характеристики обводненной газовой скважины. В способе удаления жидкости с забоя газовой скважины по технологии эксплуатации по концентрическим лифтовым колоннам подают пластовый флюид из пласта в скважину, разделяют пластовый флюид на забое скважины на газовый поток и газожидкостный поток с механическими примесями, транспортируют газовый поток на устье скважины со скоростью, не обеспечивающей подъем жидкости, транспортируют газожидкостный поток с механическими примесями на устье скважины с давлением выше, чем у газового потока, и со скоростью, обеспечивающей подъем жидкости с механическими примесями, вводят в продукцию скважины ингибитор гидрато- и льдообразования, транспортируют продукцию скважины с ингибитором гидрато- и льдообразования на установку комплексной подготовки газа. Газожидкостный поток после устья скважины направляют на сепарацию для отделения от газа жидкой фазы, отделяют взвешенные частицы от жидкой фазы, выводят осадок, направляют очищенную жидкую фазу в расположенную рядом поглощающую скважину, вводят отсепарированный газ в газовый поток, вводят в смешанный газовый поток ингибитор гидрато- и льдообразования и затем транспортируют смешанный газовый поток с ингибитором гидрато- и льдообразования на установку комплексной подготовки газа. 1 ил., 1 табл.

Изобретение предназначено для улавливания мелкодисперсных, аэрозольных и капельно-жидких частиц, а также механических примесей из газового потока при отрицательных температурах окружающего воздуха и применяется в нефтяной, газовой, химической и других отраслях промышленности. Отбойник для механических примесей включает корпус с днищем. В верхней части корпуса установлен аппарат для разделения газожидкостного потока на фазы, а нижняя часть корпуса представляет собой контейнер для механических примесей. Вокруг корпуса расположена обечайка с крышкой. В верхней части корпуса находится патрубок для входа газожидкостного потока с примесями, а патрубок для выхода газа расположен в обечайке. Наружный диаметр контейнера для механических примесей не превышает внутренний диаметр входного отверстия обечайки. Технический результат: улучшение эксплуатационных свойств отбойника. 6 з.п. ф-лы, 3 ил.

Изобретение относится к коррозионным исследованиям, а именно к способу установки образцов-свидетелей коррозии в трубопровод для определения коррозионной агрессивности исследуемых сред. Поставленная цель достигается способом установки образцов-свидетелей коррозии в трубопровод, включающим остановку работы трубопровода, стравливание давления в трубопроводе, установку цилиндрических образцов-свидетелей коррозии в полость трубопровода, согласно изобретению цилиндрические образцы-свидетели коррозии сначала устанавливают в межфланцевый блок, который в дальнейшем монтируют между имеющимися фланцами на трубопроводе, причем перед монтажом межфланцевого блока развинчивают крепеж фланцевого соединения и раздвигают фланцы, затем устанавливают паронитовые прокладки между межфланцевым блоком и фланцами и стягивают фланцы друг к другу при помощи шпилек и гаек. Технический результат - повышение безопасности установки образцов-свидетелей коррозии в трубопровод за счет исключения проведения сварочных работ, а также уменьшение металлоемкости оборудования, необходимого для установки образцов-свидетелей коррозии, и сокращение времени установки. 2 ил.

Изобретение относится к нефтегазовой отрасли и может быть использовано для подъема продукции из скважин и дальнейшего ее транспортирования. Технической задачей, решаемой предлагаемым изобретением, является уменьшение теплоотдачи от добываемого флюида к окружающей среде, предотвращение замораживания воды внутри трубы и предотвращение налипания парафинов, смол, гидратов и солей на внутренней поверхности трубы. Техническая задача решается использованием теплоизолированной гибкой полимерной трубы с одним или несколькими теплоизоляционными слоями с низким коэффициентом теплопередачи, причем в теле такой трубы могут находиться электрические нагревательные элементы для компенсации тепловых потерь. Кроме того, наружная полимерная оболочка такой трубы имеет толщину, зависящую от условий эксплуатации. Предлагаемое изобретение может быть использовано для транспортирования добываемого флюида нефтяных и газоконденсатных скважин, а также иных жидкостей (например, воды, масла, метанола, бензинового или дизельного топлива) с целью сохранения их динамической вязкости. Техническим результатом предлагаемого устройства является увеличение срока службы выкидной трубы, увеличение безопасности ее эксплуатации, а также снижение затрат на ее эксплуатацию. 2 н. и 10 з.п. ф-лы, 15 ил.

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту конденсатсодержащего пластового газа. Способ подготовки конденсатсодержащего пластового газа к транспорту на базовой установке трехступенчатой сепарацией включает подачу газового потока на первичную сепарацию, компримирование газового потока и охлаждение его окружающим воздухом, охлаждение газового потока. Газовый поток подают на вторичную сепарацию, вторичное охлаждение газового потока, понижение давления газового потока с охлаждением, затем на окончательную сепарацию. Газ сепарации нагревают газовым потоком после вторичной сепарации, понижают давление газа сепарации с охлаждением, нагревают газ сепарации газовым потоком после первичной сепарации. Газ сепарации выводят из базовой установки, подают жидкую фазу после окончательной сепарации для разделения на газ дегазации, нестабильный конденсат и водометанольный раствор. Газ дегазации подают в газовый поток после понижения давления с охлаждением, смешивают жидкую фазу после вторичной и окончательной сепарации, разделяют смешанную жидкой фазу на газ дегазации низкого давления, нестабильный конденсат и водометанольный раствор. Нестабильный конденсат смешивают и подают для разделения на газ выветривания, нестабильный конденсат и водометанольный раствор. Выводят нестабильный конденсат и водометанольный раствор из базовой установки. Смешивают газ дегазации низкого давления, газ выветривания и газ деэтанизации с установки деэтанизации конденсата, эжектируют смешанный газ в газовый поток, охлаждают газ деэтанизации нестабильным конденсатом, транспортируемым с других установок подготовки газа, и нестабильным конденсатом базовой установки подготовки газа. Техническим результатом является повышение эффективности установки низкотемпературной сепарации за счет предотвращения снижения выхода нестабильного конденсата при совместной подготовке газоконденсатной смеси скважин промысла на базовой установке и газа с установки деэтанизации конденсата. 1 табл., 1 ил.

Группа изобретений предназначена для удаления твердых примесей из нижней части аппаратов, работающих под избыточным давлением газа, в частности из скважинных приустьевых отбойников, и может применяться в нефтяной, газовой, химической и других отраслях промышленности. Скважинный приустьевой отбойник жидкостей и механических примесей содержит корпус с днищем, в верхней части которого установлен аппарат для разделения газожидкостного потока на фазы, а нижняя часть представляет собой накопительную емкость для жидкости и механических примесей. Внутри корпуса расположены две вертикальные трубы, одна из которых предназначена для подачи сжатого газа к днищу корпуса, а другая для вывода смеси жидкости с твердыми примесями. Нижний торец вертикальной трубы для подачи сжатого газа к днищу корпуса расположен выше, чем нижний торец вертикальной трубы для вывода смеси жидкости с твердыми примесями. В отбойнике установлены патрубки для входа влажного газа и выхода осушенного газа. Согласно способу удаления твердых примесей из скважинного приустьевого отбойника через вертикальную трубу подают сжатый газ для барботажа, который разрыхляет и перемешивает твердые примеси на дне корпуса отбойника и смешивает их с жидкостью, находящейся в накопительной емкости отбойника. После этого смесь жидкости с твердыми примесями выводят из отбойника через вертикальную трубу для смеси жидкости с твердыми примесями. Техническим результатом является обеспечение бесперебойной работы отбойника. 2 н. и 12 з.п. ф-лы, 3 ил.

Изобретение предназначено для улавливания мелкодисперсных, аэрозольных и капельно-жидких частиц, механических примесей из газового потока при отрицательных температурах окружающего воздуха и применяется в нефтяной, газовой, химической и других отраслях промышленности. Скважинный приустьевой отбойник включает корпус, в верхней части которого установлен аппарат для разделения газожидкостного потока на фазы. Нижняя часть представляет собой накопительную емкость для жидкости и механических примесей. Вокруг корпуса расположена обечайка с крышкой. В верхней части корпуса находится патрубок для входа газожидкостного потока. На торце обечайки установлен патрубок для выхода газа. Теплый поток газожидкостной смеси подводится к вертикальному корпусу через входной патрубок и попадает в аппарат, где от него отделяются механические примеси и жидкость, которые опускаются в нижнюю накопительную часть корпуса. Газ поднимается вверх, выходит из аппарата для разделения на фазы, ударяется о крышку обечайки и вынужденно поступает в пространство между наружной стенкой корпуса и внутренней стенкой обечайки, опускаясь к выходному патрубку. Технический результат: уменьшение энергозатрат на обогрев корпуса при повышении надежности и эффективности процесса путем уменьшения вероятности гидрато- и льдообразования. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретение предназначено для улавливания мелкодисперсных, аэрозольных и капельно-жидких частиц, механических примесей из газового потока при отрицательных температурах окружающего воздуха и применяется в нефтяной, газовой и других отраслях промышленности. Скважинный приустьевой отбойник включает корпус с днищем, в верхней части которого установлен аппарат для разделения газожидкостного потока на фазы. Нижняя часть представляет собой накопительную емкость для жидкости и механических примесей. Вокруг корпуса расположена обечайка с крышкой. В верхней части корпуса находится патрубок для входа газожидкостного потока, а в нижней части обечайки установлен патрубок для выхода газа. Теплый поток газожидкостной смеси подводится через входной патрубок и попадает в аппарат, где отделяются от газа механические примеси и жидкость, которые опускаются в нижнюю часть корпуса. Газ поднимается вверх, выходит из аппарата, ударяется о крышку обечайки и вынужденно поступает в пространство между наружной стенкой корпуса и внутренней стенкой обечайки, опускаясь к выходному патрубку, который находится в нижней части обечайки. Технический результат: уменьшение энергозатрат на обогрев корпуса, при повышении надежности и эффективности процесса путем уменьшения вероятности гидрато- и льдообразования. 2 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к конструкции фонтанной арматуры, используемой на газовых скважинах, в частности, в условиях активного водо- и пескопроявления. Фонтанная арматура для скважин, эксплуатируемых в условиях активного водо- и пескопроявления, включает запорные устройства, тройник или крестовину и дроссель, перед которым установлен скважинный приустьевой отбойник жидкостей и механических примесей, который включает корпус, в верхней части которого установлен аппарат для разделения газожидкостного потока на фазы, а нижняя часть представляет собой накопительную емкость для жидкости и механических примесей. В верхней части корпуса находится патрубок для входа газожидкостного потока, а в нижней части обечайки установлен патрубок для выхода газа. Предлагаемое изобретение позволяет повысить надежность и эффективность фонтанной арматуры путем предотвращения абразивного износа дросселя и установленного после него трубопровода при одновременном уменьшении вероятности гидрато- и льдообразования в трубопроводах системы слива жидкости и удаления песка без использования специальных нагревательных элементов. 2 н. и 15 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для подвески труб на устье скважины. Техническим результатом является улучшение массово-габаритных характеристик устройства подвеса, упрощение схемы отвода жидкости из забоя, повышение эффективности работы скважины. Устройство подвеса сталеполимерной трубы состоит из корпуса и крышки с общим центральным каналом, соединенных между собой через металлическую прокладку при помощи шпилек. Торцевой зазор между корпусом и крышкой соединен с окружающей средой при помощи обратных клапанов. В корпусе, перпендикулярно его продольной оси, установлены, с возможностью осевого вращения вокруг своей продольной оси и с возможностью радиального перемещения в корпусе, как минимум, два фиксатора, выполненных в виде стержней. Один конец фиксаторов выполнен профилированным и взаимодействует своей поверхностью с ответными местами на концевом элементе сталеполимерной трубы. Другой конец фиксатора выполнен профилированным под инструмент для придания фиксатору вращательного движения вокруг своей оси. Центральный канал выполнен профилированным для установки, удержания и герметизации конца сталеполимерной трубы одновременно в корпусе и крышке. На внешних торцевых поверхностях крышки и корпуса выполнены ответные места для соединения с ответными местами частей фонтанной арматуры. 2 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к нефтяной и газовой отраслям промышленности и может быть применено для перевода скважин на эксплуатацию по двум лифтовым колоннам без глушения скважины. Способ включает спуск и подвеску центральной лифтовой колонны, установку верхней части фонтанной арматуры, переоборудование устьевой обвязки путем установки в ее составе управляющего комплекса контроля и управления работой скважины, проведение газодинамических исследований, пуск скважины в шлейф по двум лифтовым колоннам через управляющий комплекс контроля и управления работой скважины. В основную лифтовую колонну скважины на ее начало и конец герметично устанавливают соответственно верхний и нижний наконечники, к верхнему и нижнему наконечникам герметично присоединяют соответственно пробку и управляемый клапан, находящийся в закрытом состоянии. Затем центральную лифтовую колонну монтируют в спускоподъемное устройство, перекрывают коренную задвижку, на коренную задвижку устанавливают радиальный трубодержатель центральной лифтовой колонны, на который устанавливают надкоренную задвижку, к ней присоединяют превентор, на превентор устанавливают двухкамерный герметизатор, к верхнему торцу герметизатора присоединяют инжектор, а в непосредственной близости от скважины устанавливают спускоподъемное устройство. После этого пропускают центральную лифтовую колонну концом через инжектор, с помощью которого в дальнейшем осуществляют перемещение центральной лифтовой колонны, которую пропускают через двухкамерный герметизатор, подают давление в его закрывающие гидравлические полости, тем самым сжимают уплотнительные манжеты верхней и нижней камеры двухкамерного герметизатора и герметизируют центральную лифтовую колонну. Затем ее опускают до уровня коренной задвижки, открывают коренную задвижку, производят спуск центральной лифтовой колонны до положения, когда верхний наконечник с пробкой окажется на уровне верхнего торца инжектора, присоединяют к пробке технологическую штангу, подают давление в открывающую гидравлическую полость верхней камеры двухкамерного герметизатора, в результате чего разжимают уплотнительную манжету верхней камеры двухкамерного герметизатора, опускают центральную лифтовую колонну до того положения, когда пробка окажется ниже уплотнительной манжеты верхней камеры двухкамерного герметизатора. Подают давление в закрывающую гидравлическую полость верхней камеры двухкамерного герметизатора, тем самым герметизируют технологическую штангу. Подают давление в открывающую гидравлическую полость нижней камеры двухкамерного герметизатора, в результате чего разжимают уплотнительную манжету нижней камеры двухкамерного герметизатора, после чего центральную лифтовую колонну опускают до положения, когда пробка окажется ниже уплотнительной манжеты нижней камеры двухкамерного герметизатора, после этого подают давление в закрывающую гидравлическую полость нижней камеры двухкамерного герметизатора, тем самым герметизируют технологическую штангу, затем пропускают центральную лифтовую колонну через превентор и надкоренную задвижку до совпадения посадочной поверхности верхнего наконечника и посадочной поверхности радиального трубодержателя центральной лифтовой колонны, фиксируют верхний наконечник центральной лифтовой колонны в радиальном трубодержателе центральной лифтовой колонны с помощью радиальных крепежных элементов, затем извлекают из верхнего наконечника пробку при помощи технологической штанги, поднимают пробку с технологической штангой выше уровня надкоренной задвижки, закрывают надкоренную задвижку, подают давление в открывающие гидравлические полости двухкамерного герметизатора, в результате чего разжимают уплотнительные манжеты верхней и нижней камер двухкамерного герметизатора. После этого извлекают наружу технологическую штангу с пробкой, демонтируют противовыбросное оборудование, демонтируют комплект спускоподъемного оборудования, на надкоренную задвижку монтируют верхнюю часть фонтанной арматуры, открывают надкоренную задвижку, оказывают внешнее воздействие на управляемый клапан, переводя его в открытое состояние, в результате чего соединяют объемы основной и центральной лифтовых колонн. Также заявлено устройство для осуществления способа. Технический результат заключается в снижении трудоемкости, стоимости и времени работ. 2 н.п. ф-лы, 7 ил.

 


Наверх