Патенты автора Федоров Михаил Александрович (RU)

Изобретение относится к способу гибридной лазерно-дуговой сварки толстостенных труб, в частности к сварке продольных прямолинейных швов трубной заготовки с толщиной стенки от 15,0 мм из легированных сталей. Осуществляют формовку трубной заготовки, сведение кромок без предварительной разделки и последующее выполнение с наружной стороны заготовки корневого сварного шва. Корневой шов выполняют путем совместного воздействия на поверхность кромок лазерным лучом и электрической дугой, которую располагают перед лазерным лучом и направляют с наклоном к поверхности кромок. При выполнении корневого шва с наружной стороны заготовки направляют расфокусированный лазерный луч диаметром 1-1,5 мм под углом к свариваемым поверхностям со стороны, противоположной от электрической дуги, оставляя с внутренней стороны непереплавленную часть кромок толщиной не более 3 мм. Затем выполняют с внутренней стороны облицовочный шов электродуговой сваркой на глубину не более 5-7 мм. Технический результат состоит в повышении качества сварных прямошовных труб за счет уменьшения ширины зоны термического влияния и получения равнопрочной сварной трубы при сохранении механических свойств. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к контрольно-измерительной технике, а именно к средствам электромагнитного контроля толщины антикоррозионного покрытия стальных труб, находящихся в производственном потоке. Сущность: устройство для автоматического контроля антикоррозионного покрытия на стальной трубе, находящейся в производственном потоке и совершающей винтовое движение, включает опору с установленной на ней с возможностью поворота относительно горизонтальной оси и фиксации в рабочем положении наклонной рамой. На раме с возможностью поворота относительно горизонтальной оси установлена платформа, несущая комплект горизонтально ориентированных вихретоковых датчиков. Датчики размещены в два ряда в шахматном порядке и предназначены для передачи сигнала о толщине антикоррозионного покрытия участка поверхности трубы, длина которого задана больше, чем шаг винтового движения трубы. Рабочее положение наклонной рамы соответствует рабочему положению платформы с комплектом вихретоковых датчиков. Устройство снабжено средствами автоматизации процесса контроля. Технический результат: повышение точности контроля толщины антикоррозионного покрытия всей поверхности трубы, исключая «слепые» зоны, при полной автоматизации процесса измерения/контроля толщины такого покрытия и отсутствии зависимости от диаметра труб и марок стали. 3 з.п. ф-лы, 2 ил.

Изобретение относится к контрольно-измерительной технике, а именно к технологии и средствам электромагнитного контроля толщины антикоррозионного покрытия стальных труб, и может быть использовано для трубного производства в технологическом процессе, включающем нанесения антикоррозионного покрытия на поверхность стальных бесшовных и сварных труб. Способ контроля толщины антикоррозионного покрытия стальной трубы, находящейся в производственном потоке и совершающей винтовое движение на вращающихся роликах, включает определение толщины антикоррозионного покрытия движущейся трубы с использованием вихретоковых датчиков, генерирующих сигнал о толщине антикоррозионного покрытия. Датчики установлены неподвижно относительно контролируемого участка поверхности движущейся трубы и распределены в шахматном порядке. Контролируемый участок ориентирован вдоль образующей трубы и выходит за пределы шага винтового движения трубы. В режиме реального времени с помощью компьютерной программы, заложенной в промышленный компьютер, ведут сравнение данных о толщине покрытия, полученных путем обработки сигнала вихретоковых датчиков, с данными о требуемой толщине антикоррозионного покрытия и выявляют дефектный участок поверхности трубы, которому соответствует отклонение от требуемой толщины антикоррозионного покрытия. На поверхность дефектного участка наносят маркировку. Технический результат: расширение арсенала средств, используемых для контроля толщины антикоррозионного покрытия на трубах, повышение точности контроля, исключающего наличие «слепых» зон поверхности трубы. 1 ил.

Изобретение относится к области лазерно-дуговой сварки и может быть использовано в разных отраслях промышленности, например, при производстве труб. В предлагаемом способе лазерно-дуговой сварки осуществляют предварительный этап электродуговой сварки на пробном образце и при установившемся процессе электродуговой сварки определяют диапазон изменения и максимальное значение скорости подачи плавящегося сварочного электрода при электродуговой сварке в режиме поддержания заданных значений параметров сварки. После чего осуществляют лазерно-дуговую сварку снаружи свариваемой детали с формированием одной сварочной ванны при заданных значениях параметров сварки, при этом в реальном времени контролируют скорость подачи плавящегося сварочного электрода и поддерживают скорость подачи плавящегося сварочного электрода на предварительно зафиксированном максимальном значении путем регулирования расстояния между лазерным лучом и точкой горения электрической дуги. Техническим результатом предлагаемого изобретения является повышение стабильности процесса лазерно-дуговой сварки и параметров сварного соединения. 2 ил.

Изобретение относится к сварке металлоконструкций, в частности к сварке продольных швов сформованной цилиндрической заготовки, и может быть использовано при производстве стальных сварных труб большого диаметра с толщиной стенки от 12 до 25 мм и выше до 50 мм с внутренним и наружным плакирующими слоями. Техническим результатом является повышение производительности сварки за счет минимизации доли сварного шва по отношению к основному металлу и плакирующему слою с сохранением антикоррозионных свойств плакирующего слоя. Осуществляют многослойную гибридную лазерно-дуговую сварку рабочего шва стальных плакированных труб с внутренним и наружным плакирующими слоями, собранных встык с зазором до 1 мм. Выполняют щелевую разделку кромок с величиной притупления, равной толщине основного металла. Воздействуют электрической дугой с плавящимся электродом. После чего воздействуют лазерным лучом. Накладывают облицовочный внутренний шов и наружный шов методом дуговой сварки. 2 з.п. ф-лы, 4 ил.

Изобретение относится к производству труб большого диаметра, в частности сварке сформованных цилиндрических заготовок. Техническим результатом является упрощение системы наведения лазерного луча на стык кромок. В способе сварки труб большого диаметра используют трубную заготовку с притуплением кромок без прихваточного шва. Трубную заготовку размещают в сборочно-сварочной клети сборочно-сварочного стана, где с помощью роликовых балок выравнивают кромки по высоте и сжимают трубную заготовку на всем протяжении сборочно-сварочной клети. После чего осуществляют наложение рабочего шва лазерной или гибридной лазерно-дуговой сваркой с проплавлением притупления. Причем лазерную головку располагают так, чтобы сварочная ванна находилась посередине длины роликовых балок. 1 ил.

Изобретение относится к лазерной или лазерно-дуговой сварке труб большого диаметра. Техническим результатом заявляемого изобретения является уменьшения брака при сварке с использованием лазерного излучения. Определяют заданную мощность лазерного излучения. Затем выполняют наружный рабочий шов лазерной или гибридной лазерно-дуговой сваркой. После сварки трубной заготовки под лазерную головку подводят датчик мощности, включают излучение лазера, замеряют мощность лазерного излучения и сравнивают значение замеренной мощности с заданной мощностью. При этом сварку продолжают при отклонении замеренной мощности от задаваемой не более чем на 5%. 1 з.п. ф-лы, 2 ил.

Изобретение относится к гибридной лазерно-дуговой сварке металлоконструкций толщиной стенки от 8 до 12 мм. Способ гибридной лазерно-дуговой сварки тонкостенных стыковых соединений включает выполнение корневого шва электрической дуговой сваркой с плавящимся электродом в среде защитного газа совместно с лазерной сваркой в единой сварочной ванне. Лазерным лучом воздействуют на величину притупления кромок. Осуществляется выявление дефектов вершины корневого шва, залегающих на глубину, ограниченную половиной высоты корневого шва, устранение дефектов корневого шва путем выполнения наружного облицовочного шва с использованием расфокусированного лазерного луча с диаметром фокального пятна от 1 до 8 мм. Дефекты выявляют с использованием образца. Техническим результатом является обеспечение качества сварного соединения и повышение эксплуатационных характеристик изделия со сварным швом за счет одновременного устранения основных дефектов сварного шва стыкового соединения, снижение материалоемкости по пути исключения оборудования, обеспечивающего подавление дефектов в виде пор. 1 з.п. ф-лы, 1 пр., 1 ил.
Изобретение относится к гибридной лазерно-дуговой сварке металлоконструкций толщиной от 12 мм и выше, в частности к сварке продольных швов сформованных трубных заготовок при производстве труб большого диаметра из листового проката с толщиной стенки до 50 мм. Способ гибридной лазерно-дуговой сварки толстостенных стыковых соединений включает выполнение корневого шва электрической дуговой сваркой с плавящимся электродом в среде защитного газа совместно с лазерной сваркой. Осуществляется выявление дефектов вершины корневого шва, залегающих на глубину, ограниченную половиной высоты корневого шва, устранение дефектов корневого шва путем выполнения дополнительного сварного шва с использованием расфокусированного лазерного луча с диаметром фокального пятна от 1 до 8 мм. Затем наносят облицовочный наружный и внутренний сварные швы. Техническим результатом является повышение эксплуатационных характеристик изделия со сварным швом, обеспечение качества сварного соединения при снижении материалоемкости способа по пути исключения оборудования, обеспечивающего подавление дефектов. 2 з.п. ф-лы, 1 пр.

Изобретение относится к сварке толстостенных металлоконструкций, в частности к сварке продольных швов сформованной цилиндрической заготовки, и может быть использовано при производстве сварных труб большого диаметра. Технический результат изобретения заключается в улучшении механических характеристик сварного шва. В процессе гибридной лазерно-дуговой сварки труб большого диаметра осуществляют ультразвуковую обработку. На стык свариваемой трубной заготовки воздействуют первой дуговой сварочной горелкой, затем лазерным лучом, после чего второй дуговой сварочной горелкой. Ультразвуковую обработку осуществляют посредством двух электромагнитно-акустических датчиков, установленных по обе стороны стыка свариваемой трубной заготовки на расстоянии 120 мм от сварочной ванны. 1 з.п. ф-лы, 3 ил.

Изобретение относится к производству труб большого диаметра и может быть использовано в отраслях промышленности, например судостроительной. В способе лазерно-дуговой сварки труб сварку трубной заготовки осуществляют гибридной лазерно-дуговой сваркой в импульсно-периодическом режиме, при котором выбирают одинаковую частоту пульсаций электрической дуги и лазерного излучения. Колебания тока электрической дуги и мощности лазерного излучения синхронизируют во времени, обеспечивая совпадение передних фронтов импульсов электрической дуги и мощности лазерного излучения или опережение импульса лазерного излучения. Опережение фронта импульса лазерного излучения обеспечивают не более чем на 200 мкс по отношению к фронту импульса электрической дуги. Частоту импульсов выбирают в диапазоне 100-900 Гц, ток дуги 300-800 А, мощность лазера 1-20 кВт, скважность импульсов 0,2-0,7. Техническим результатом предлагаемого изобретения является повышение стабильности процесса сварки, мелкокапельного переноса металла и повышение механических свойств шва. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области лазерной или гибридной сварки и может быть использовано в разных отраслях промышленности, в т.ч. при производстве труб большого диаметра. В способе сварки труб большого диаметра создают базу данных, содержащую информацию о положении стыка кромок по длине трубной заготовки и формируют прихваточный шов электрической дуговой сваркой. Вслед за прихваточным выполняют рабочий шов лазерной или лазерно-дуговой сваркой, при которой сварочные головки располагают относительно сварочной головки, выполняющей прихваточный шов, на расстоянии большем, чем требуется для застывания прихваточного шва при максимальной скорости сварки. Лазерный луч наводят на стык кромок, определяя его положение на основе значений базы данных с учётом неизменного расстояния между сканирующим датчиком и лазерным лучом, при этом прихваточный шов и рабочий шов выполняют на одной технологической линии. Техническим результатом является упрощение процесса сварки при создании базы данных положения стыка кромок и сохранении высокого качества сварного шва. 2 з.п. ф-лы, 2 ил.

Изобретение предназначено для ремонта дефектов продольных швов труб большого диаметра, изготовленных с применением технологий лазерной, гибридной лазерно-дуговой сварки. Комплекс роботизированный включает рельсовую платформу 1, установленную с возможностью перемещения на рельсах 2, расположенных вдоль опорных роликов 3, предназначенных для размещения трубы 4. Рельсовая платформа 1 содержит несущую раму 6 с колесными парами 7. Одна из колесных пар 7 связана с приводом 8 платформы 1, прикрепленным к несущей раме 1. Несущая рама 1 имеет настил 9, поверхность которого представляет собой поверхность платформы 1 с установленными на нем роботом 10 с прибором ультразвукового контроля, роботом 11 с фрезерной головкой, роботом 12 с оптической головкой и оборудованием наплавки и подачи проволоки, блоком управления 13, предназначенным для управления приводом 8 платформы 1 и роботами 10, 11, 12. Комплекс роботизированный позволяет устранить дефекты продольного шва трубы с максимальным сохранением в зоне ремонта геометрии шва за счет управляемого перемещения платформы, несущей роботы, вдоль продольного шва трубы. 2 з.п. ф-лы, 4 ил.

Изобретение относится к сварке продольных швов сформованной цилиндрической заготовки и может быть использовано при производстве стальных сварных труб большого диаметра с толщиной стенки от 12 до 25 мм и выше, до 50 мм, с наружным плакирующим слоем, изготовленным из нержавеющей стали марки, например, 08Х18Н10Т или 12Х18Н10Т. Техническим результатом заявляемого изобретения является минимизация доли сварного шва по отношению к основному металлу и плакированному слою с сохранением антикоррозионных свойств плакированного слоя. Выполняют разделку кромок с величиной притупления, равной до 70% от толщины стенки трубы без учета толщины плакирующего слоя, и величиной наружного скоса кромок больше толщины плакирующего слоя на 2-3 мм. Трубы собирают встык с зазором до 1 мм. Воздействуют электрической дугой с плавящимся электродом. Затем воздействуют лазерным лучом с мощностью, достаточной для проплавления металла с толщиной меньше величины притупления, выполняя рабочий шов с формированием валика на уровне плакирующего слоя. На рабочий шов наносят защитный наружный слой, а также выполняют внутренний шов. 4 з.п. ф-лы, 10 ил., 1 табл.

Изобретение относится к технологии лазерной сварки, в частности к способу защиты оптической лазерной головки в начале сварки. Техническим результатом является защита стекла лазерной оптической головки от брызг в начале лазерной сварки без использования дополнительного оборудования при увеличении производительности процесса сварки из-за уменьшения работ по замене защитного стекла. Воздействие лазером начинают на выводных технологических планках. Мощность лазерного луча увеличивают равномерно в течение 1-2 секунд от 0 кВт до мощности, необходимой для эффективного проплавления металла таким образом, чтобы к моменту выхода лазерного луча с технологических планок на свариваемую поверхность парогазовый канал был стабилен. 2 з.п. ф-лы, 6 ил., 1 фото.

Изобретение относится к способу гибридной лазерно-дуговой сварки стальных труб с наружным плакирующим слоем и может быть использовано при производстве сварных стальных труб большого диаметра с толщиной стенки до 25 мм. Техническим результатом изобретения является минимизация доли сварного шва по отношению к основному металлу и плакированному слою с сохранением антикоррозионных свойств плакированного слоя. Трубы собирают с зазором от 0 до 1 мм. Выполняют Y-образную разделку кромок, при которой величина скоса кромки выбрана больше толщины плакирующего слоя от 0 до 3 мм. Воздействуют электрической дугой с плавящимся электродом, после чего воздействуют лазерным лучом с мощностью, достаточной для сквозного проплавления металла, выполняя рабочий шов с образованием обратного валика изнутри трубной заготовки. Затем воздействуют дополнительной электрической дугой, отстоящей от лазерного луча на расстоянии 6-15 мм, с легированной проволокой с образованием внешнего валика на уровне плакирующего слоя. На рабочий шов наносят защитный наружный слой. 2 з.п. ф-лы, 6 ил.

Изобретение относится к роботизированному комплексу для ремонта дефектов сварных швов труб, изготовленных с использованием технологии лазерной сварки. Приводная транспортная тележка установлена с возможностью перемещения по направляющим и на ней установлены три робота со вспомогательным оборудованием. В систему управления роботами введены блок управления приводом транспортной тележки, три блока управления, каждый из которых выполняет функцию управления соответствующим роботом, и главный блок управления. Каждый робот предназначен для выполнения одной из трех последовательных операций над участком дефекта сварного шва трубы при ее продольном положении относительно рельсов. В соответствии с последовательностью выполнения операций роботы представляют собой первый шестикоординатный робот с прибором ультразвукового контроля, являющегося рабочим органом, предназначенным для определения координат дефекта и построения координатной модели дефекта. Второй шестикоординатный робот с фрезерной головкой, предназначенной для выборки дефекта на основе координатной модели дефекта. Третий шестикоординатный робот с оптической головкой и оборудованием наплавки и подачи проволоки, предназначенными для заплавления выборки на основе координатной модели дефекта. В системе управления первый главный блок управления связан с остальными блоками для передачи управляющих воздействий на привод перемещения транспортной тележки и к рабочим органам роботов. Технический результат заключается в максимально возможном сохранении геометрии сварного шва труб на участке ремонта при минимальной выборке металла и минимизации тепловложений. 1 з.п. ф-лы, 2 ил.

Изобретение относится к сварке толстостенных металлоконструкций, в частности к гибридной лазерно-дуговой сварке стальных толстостенных конструкций. На свариваемые кромки с притуплением воздействуют электрической дугой, после чего воздействуют лазерным лучом, фокус которого располагают выше свариваемых поверхностей металла. Разделку кромок выполняют симметричной, а участки притупления кромок - друг к другу под углом 1-5º. Диаметр лазерного луча в области падения лазерного луча на свариваемые поверхности металла составляет не менее диаметра, рассчитанного по формуле: d=2h·tg(α/2)-k,где α – угол между участками притупления кромок друг к другу, выбранный из диапазона 1-5º; d – диаметр расфокусированного лазерного луча в области падения лазерного луча на свариваемые поверхности металла, мм; h – величина участка притупления, мм, k – коэффициент, выбранный из диапазона 0-0,3 мм. Техническим результатом заявляемого изобретения является получение качественного сварного шва труб большого диаметра с обеспечением высокого уровня механических характеристик сварного соединения, изготовленных из проката толщиной от 25 мм. 4 з.п. ф-лы, 9 ил.

Изобретение относится к способу гибридной лазерно-дуговой сварки толстостенных труб большого диаметра, в частности к сварке продольных швов сформованной цилиндрической заготовки при производстве сварных труб из листового проката класса прочности до Х120 включительно и с толщиной стенки до 50 мм. На свариваемые кромки труб воздействуют электрической дугой, затем - лазерным лучом, после чего - электрической дугой. При этом лазерный луч направляют с помощью оптической системы, состоящей из последовательно расположенных источника лазерного излучения, коллимирующего зеркала с фокусным расстоянием 130-240 мм и фокусирующей линзы с фокусным расстоянием 500-1000 мм. Техническим результатом является получение качественного сварного шва толстостенных труб большого диаметра из высокопрочных марок стали с обеспечением высокого уровня ударной вязкости не менее 80 Дж/см2 при температуре испытания 40°С на U-образном и V-образном концентраторах. 4 з.п. ф-лы, 8 ил.

Изобретение относится к лазерно-дуговой сварке плавящимся электродом в среде защитного газа стыкового соединения сформованной трубной заготовки из углеродистой стали большого диаметра от 530 до 1420 мм с толщиной стенок от 8 до 45 мм. Электродуговую сварку выполняют трехфазной дугой. Используют сварочные горелки с плавящимся электродом. Электроды первой и второй дуговых горелок и свариваемую трубу подключают к соответствующей фазе источника трехфазного питания. Лазерный луч фокусируют в области кромок свариваемой поверхности. Расстояние между центром сфокусированного пятна лазерного излучения и точкой дугового контакта электрода первой дуговой горелки устанавливают от 10-15 мм. Точку дугового контакта второй дуговой горелки устанавливают на расстоянии от точки дугового контакта первой горелки, обеспечивающем образование общей сварочной ванны с первой горелкой и лазерным лучом. Лазерный луч наклоняют в сторону, противоположную направлению движения кромок свариваемой поверхности, на угол 20-25° относительно нормали к поверхности свариваемых кромок. Электроды дуговых горелок наклоняют в сторону направления движения кромок свариваемой поверхности на угол 30-35° относительно нормали к поверхности свариваемых кромок. Защитный газ подают в зону лазерного излучения и в зоны электродов. Технический результат заключается в снижении дефектов сварки типа сквозных отверстий, раковин, пор и шлаковых включений за счет улучшения условий дегазации сварочной ванны. 1 ил.

Изобретение может быть использовано для лазерной очистки свариваемых поверхностей от нежелательных слоев и загрязнений при подготовке к выполнению лазерной сварки стальной сформованной трубной заготовки, толщиной от 8 до 45 мм. Выполняют сканирование расфокусированным коллимированным лазерным лучом по очищаемой поверхности движущейся стальной сформованной трубной заготовки по обе стороны от средней линии будущего шва. Сканируют с переменной частотой следования импульсов лазерного излучения с изменяющейся длительностью импульсов. При этом изменяют среднюю максимальную мощность излучения и одновременно выполняют непрерывный контроль качества очистки. При требуемом качестве очистки фиксируют значение мощности излучения и не изменяют его до окончания выполнения очистки поверхности. Способ обеспечивает выполнение качественной очистки поверхности за один проход луча лазера с достижением требуемого качества очистки и без изменения характеристик поверхностного слоя материала изделия. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для ремонта полученного лазерной или лазерно-дуговой сваркой сварного шва стальной трубной сформованной заготовки толщиной от 8 до 45 мм, диаметром до 1420 мм. Выборку дефектного участка выполняют лазерной резкой, а его заполнение выполняют гибридной лазерно-дуговой сваркой с использованием по меньшей мере одной сварочной дуговой горелки с плавящимся электродом на обратной полярности. Для выборки дефектного участка формируют сфокусированный лазерный луч и устанавливают перпендикулярно обрабатываемой поверхности. Позади луча формируют струю воздуха высокого давления, направленную в сторону движения луча по поверхности шва, а для наплавки формируют расфокусированный лазерный луч, направленный на кромки выборки перед электродом сварочной дуговой горелки. Лазерный луч и дугу сварочной горелки располагают с образованием общей сварочной ванны, а сварку ведут с увеличенным вылетом электрода сварочной горелки за один проход. Способ обеспечивает минимизацию тепловложения в ремонтируемый участок сварного шва, полученного лазерной сваркой, и снижает объем выемки дефектного участка с сохранением в зоне ремонта геометрии сварного шва и без снижения механических характеристик металла шва. 2 з.п. ф-лы, 4 ил.

Изобретение может быть использовано для ремонта сварных швов сформованной трубной заготовки толщиной от 8 до 45 мм, диаметром до 1420 мм, полученных лазерной или лазерно-дуговой сваркой. Осуществляют выборку дефектного участка в пределах обозначенных границ плазменно-дуговой резкой и заполнение его плавящимся электродом на обратной полярности с увеличенным вылетом, выбранным из условия выполнения наплавки за один проход. Наплавку осуществляют непосредственно после осуществления выборки металла дефектного участка сварного шва, температура которого не достигла температуры его кристаллизации. Способ обеспечивает минимизацию тепловложения в ремонтируемый участок сварного шва, полученного лазерной сваркой, и снижает объем выемки дефектного участка, позволяет производить ремонт внутри трубной заготовки с сохранением в зоне ремонта геометрии сварного шва и без снижения механических характеристик металла шва. 2 ил.

Изобретение может быть использовано для лазерной очистки свариваемых поверхностей от нежелательных слоев и загрязнений, в частности для удаления ржавчины, окалины, нефтепродуктов с поверхности стальной сформованной трубной заготовки, толщиной от 8 до 45 мм. Выполняют сканирование сформированным расфокусированным коллимированным лазерным лучом по очищаемой поверхности движущейся стальной сформованной трубной заготовки. Сканируют с переменной частотой следования импульсов лазерного излучения с изменяющейся длительностью импульсов. Одновременно изменяют среднюю максимальную мощность излучения в пределах и выполняют непрерывный контроль качества очистки. При требуемом качестве очистки фиксируют значение мощности излучения и не изменяют его до окончания выполнения очистки поверхности. Изобретение снижает вероятность формирования дефектов шва за счет выполнения очистки свариваемой поверхности непосредственно в процессе выполнения сварки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к производству труб большого диаметра, в частности к сборочно-сварочному стану для производства труб. Стан содержит средство подачи трубной заготовки с транспортным рольгангом с продольной осью, проходящим через сборочно-сварочную клеть с радиально расположенными прижимными роликовыми балками, выполненными с возможностью обжатия трубной заготовки, перемещаемой по транспортному рольгангу, продольно ориентированный направляющий нож и тележку с роликами, вращающимися по внутренней поверхности трубной заготовки при перемещении тележки через сборочно-сварочную клеть. На опорных элементах сборочно-сварочной клети установлена гибридная лазерно-дуговая сварочная головка с возможностью ее перемещения по горизонтали, вертикали и вокруг ее продольной оси. Тележка жестко связана с опорными элементами сборочно-сварочной клети посредством вертикально ориентированного продольно направленного соединительного ножа. Направляющий нож выполнен с возможностью позиционирования трубной заготовки раскрытием кромок в положении на 12 часов и установлен на опорных элементах сборочно-сварочной клети с возможностью вертикального перемещения и фиксации. На тележке установлен с возможностью вертикального перемещения упорный ролик, обращенный вверх и выполненный с возможностью воздействия на кромки трубной заготовки с ее внутренней стороны. Одна из роликовых балок установлена вертикально с возможностью воздействия на кромки трубной заготовки с ее наружной стороны. Технический результат: нанесение корневого шва при гарантированном выравнивании кромок трубной заготовки независимо от типоразмера. 4 ил.

Изобретение относится к производству труб большого диаметра. Стан включает средство подачи трубной заготовки с транспортным рольгангом, имеющим продольную ось и проходящим через сборочно-сварочную клеть с радиально расположенными прижимными роликовыми балками, предназначенными для обжатия трубной заготовки, перемещаемой по транспортному рольгангу, а также продольно ориентированный направляющий нож, сварочную тележку с роликами с обеспечением возможности вращения роликов по внутренней поверхности трубной заготовки при перемещении через сборочно-сварочную клеть. Возможность сборки трубной заготовки независимо от типоразмера с внутренней стороны при гарантированном выравнивании кромок трубной заготовки обеспечивается за счет того, что сварочная тележка жестко связана с опорными элементами сборочно-сварочной клети через вертикально ориентированный и продольно направленный соединительный нож, а направляющий нож предназначен для позиционирования трубной заготовки раскрытием кромок в положении на 12 часов и установлен на опорных элементах сборочно-сварочной клети с возможностью перемещения в вертикальном направлении и фиксации, на сварочной тележке установлены сварочная головка с возможностью вертикального перемещения для наведения на кромки трубной заготовки и обращенный вверх прижимной ролик с возможностью перемещения в вертикальном направлении для воздействия на кромки трубной заготовки с внутренней стороны, при этом одна из роликовых балок установлена вертикально с возможностью воздействия на кромки трубной заготовки с наружной стороны. 4 ил.

Изобретение относится к области производства стальных сварных труб и может быть использовано для изготовления двухшовных труб большого диаметра. Способ включает использование двух идентичных узких стальных листов. Повышение однородности механических характеристик рабочих швов трубы и равномерности распределения несущей способности между ними за счет уравнивания количества пластических деформаций для обоих сварных швов обеспечивается посредством того, что первые продольные кромки листов собирают в первый стык кромок первым технологическим сварным швом. Формуют полученный в результате сварки широкий стальной лист в трубную цилиндрическую заготовку. Стыкуют вторые кромки узких листов во второй стык кромок вторым технологическим сварным швом. На первый и второй стыки кромок накладывают рабочие внутренние и наружные швы, при этом первый и второй технологические швы полностью переваривают. Перекрытие внутреннего и наружного рабочих швов составляет не менее 1,5 мм. Экспандируют сваренную трубу. В процессе изготовления выполняют визуальный контроль технологических швов. Перед формовкой трубной цилиндрической заготовки широкий лист допускается переворачивать. 1 з.п. ф-лы, 11 ил.

Изобретение относится к способу лазерно-дуговой сварки стыка заготовок из углеродистой стали с толщиной стенок 10-45мм. На свариваемую поверхность воздействуют расфокусированным первым лазерным лучом. Воздействием первого лазерного луча выполняют оплавление свариваемых кромок до перекрытия зазора между ними с образованием сварочной ванны. Затем воздействуют гибридной лазерно-дуговой сваркой с плавящимся электродом с образованием со вторым лазерным лучом единой сварочной ванны. Расстояние между первым и вторым лазерным лучом составляет 50-70 мм. Сварочную дуговую горелку размещают перед вторым лазерным лучом, который фокусируют на поверхность сварочной ванны. Расстояние между центром сфокусированного пятна второго лазерного луча и точкой дугового контакта составляет 10-15 мм. Второй лазерный луч наклоняют в сторону направления движения свариваемых кромок на угол θ 20-25° относительно нормали к поверхности свариваемой заготовки. Сварочную дуговую горелку наклоняют в сторону, противоположную направлению движения свариваемых кромок на угол ϕ 30-35° относительно нормали к поверхности свариваемой заготовки. В процессе сварки подают защитный газ в зону электрода в одном направлении с электродом сварочной дуговой горелки. Технический результат заключается в обеспечении сдерживания роста твердости сварных швов и в улучшении дегазации сварочной ванны, что позволяет минимизировать или исключить полностью риск образования таких дефектов, как кристаллизационные трещины и поры. 1 ил.

Изобретение относится к способу лазерно-дуговой сварки стыка сформованной трубной заготовки из углеродистой стали большого диаметра от 530 до 1420 мм с толщиной стенок от 8 до 45 мм и зазором до 1 мм. На свариваемую поверхность воздействуют гибридной лазерно-дуговой сваркой с плавящимся электродом с образованием единой сварочной ванны. Затем на сформированный первый шов, не остывший до состояния, при котором возникает кристаллизация металла корневого шва, воздействуют сваркой под флюсом. Способ обеспечивает фиксированную ширину и высоту насыпки флюса, в зависимости от ширины шва. Обеспечиваются благоприятные условия кристаллизации сварочной ванны после лазерно-дуговой сварки. Создаются благоприятные условия для выполнения сварки под флюсом с обеспечением гарантированного провара с заполнением зазора между кромками до 1 мм. В результате достигается оптимизация микроструктуры сварных швов, уменьшение дефектов сварки типа сквозных отверстий, раковин, пор и шлаковых включений; улучшение дегазации сварочной ванны как на этапе лазерно-дуговой сварки, так и на этапе сварки под флюсом, что позволяет минимизировать или исключить полностью риск образования таких дефектов, как кристаллизационные трещины и поры. 2 ил.

Изобретение может быть использовано для сварки сформованных трубных заготовок из углеродистой стали диаметром от 530 до 1420 мм с толщиной стенок от 8 до 45 мм. Околошовную зону свариваемого участка трубы нагревают индуктором до и после выполнения сварки до температуры 200-350°С. Выполняют гибридную сварку. Лазерный луч фокусируют на свариваемые кромки трубной заготовки после сварочной дуговой горелки. Расстояние между центром сфокусированного пятна лазерного луча и точкой дугового контакта сварочной горелки составляет 10-15 мм. Лазерный луч наклоняют в сторону направления движения свариваемых кромок на угол 20-25° относительно нормали к поверхности свариваемых кромок, а сварочную дуговую горелку наклоняют в противоположную сторону на угол 30-35°. В процессе сварки подают защитный газ в зону электрода горелки. Температуру повторного нагрева поддерживают до достижения температурой шва вышеуказанной температуры околошовной зоны. Способ обеспечивает контролируемую кристаллизацию металла сваренного шва за счет уменьшения сварочной ванны и выполнения термообработки сваренного шва, улучшение дегазации сварочной ванны, что позволяет минимизировать риск образования кристаллизационных трещин и пор. 1 ил.

Изобретение относится к устройству для лазерно-дуговой сварки стыка сформованной трубной заготовки. Первая электродуговая горелка закреплена на опорной конструкции перед лазерной головкой на расстоянии, при котором в процессе сварки расстояние между центром сфокусированного пятна лазерного луча и точкой дугового контакта упомянутой первой горелки составляет 10-15 мм. Средство для подачи флюса и вторая электродуговая горелка последовательно закреплены на опорной конструкции после лазерной головки, которая закреплена наклонно в сторону направления движения свариваемых кромок с возможностью обеспечения угла 20-25° между формируемым лазерным лучом и нормалью к поверхности свариваемой заготовки с возможностью обеспечения расстояния 50-70 мм между центром сфокусированного на свариваемые кромки пятна лазерного луча и точкой дугового контакта второй горелки. Первая электродуговая горелка наклонена в сторону, противоположную направлению движения свариваемых кромок, на угол 30-35° относительно нормали к поверхности свариваемой заготовки. Ограждение выполнено из вертикальных пластин, жестко соединенных в форме прямоугольной коробки без дна, имеющей ширину от 40 мм до 100 мм и высоту 200 мм, на опорной конструкции с возможностью скольжения по поверхности свариваемой трубной заготовки в процессе выполнения сварки. Электрод второй электродуговой горелки размещен внутри ограждения. Средство для подачи флюса выполнено в виде воронки и ссыпной трубки, присоединенной к выходному отверстию конической части воронки с возможностью направления ее нижнего конца внутрь ограждения под углом к стенке, отделяющей лазерный луч от флюса, и на расстоянии 80 мм от нижней границы упомянутой стенки. Технический результат заключается в оптимизации микроструктуры сварных швов, уменьшении дефектов сварки типа сквозных отверстий, раковин, пор и шлаковых включений, улучшении дегазации сварочной ванны, что позволяет минимизировать или исключить полностью риск образования таких дефектов, как кристаллизационные трещины и поры. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способу ремонта продольного шва трубы, нанесенного методом лазерной сварки. Осуществляют обнаружение дефекта методом ультразвукового контроля путем сканирования вдоль линии шва с использованием ультразвуковых преобразователей до обнаружения дефекта. Строят координатную модель дефекта, данные которой используют для построения координатной модели выборки, которую вводят в блок управления. Блок управления осуществляет позиционирование в зоне ремонта оптической лазерной головки, с помощью которой на стадии выборки дефекта выполняют лазерную строжку путем нагрева и расплавления металла лазерным лучом в зоне выборки с последующим удалением расплавленного металла струей сжатого воздуха. Заплавление выборки выполняют воздействием лазерного излучения на присадочный материал, помещенный в полость выборки. Изобретение позволяет выполнить ремонтный шов, имеющий малую ширину, с максимальным сохранением в зоне ремонта геометрии продольного шва. 1 з.п. ф-лы, 2 ил.

Изобретение относится к способу лазерной сварки продольного шва трубы (варианты). Способ включает подготовку под сварку с выполнением притупления на кромках трубной заготовки, формовку трубы, сборку и сварку лазерным лучом с наложением корневого шва сверху и сварного шва. При подготовке под сварку трубной заготовки на притупление одной из ее кромок наплавляют наклонные валики из металлического сплава на расстоянии друг от друга в восходящем направлении относительно направления перемещения лазерного луча при сварке по первому варианту. По второму варианту наплавляют наклонные валики из металлического сплава в нисходящем направлении относительно направления перемещения лазерного луча при сварке. При сборке осуществляют обжатие кромок трубной заготовки с образованием между ними наклонных каналов, обеспечивающих выход газов при лазерной сварке продольного шва трубы. Технический результат заключается в повышении технологичности процесса и качества сварных соединений труб. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к сварочному производству и может быть применимо для производства труб с использованием технологии лазерной сварки. Способ подготовки стыка кромок трубной заготовки под лазерную сварку включает подготовку разделки кромок листа, сборку трубной заготовки, размещение между кромками присадочного металлического материала в качестве вставки. Разделке придают конфигурацию на основе Y-образной разделки кромок с нижним косым срезом кромок. Вставку формируют путем спрессовывания металлического порошка, который засыпают в зазор между кромками в процессе обжима трубной заготовки. Технический результат: расширение арсенала средств, обеспечивающих эффективное образование прослойки из легирующего металла, находящейся в стыке кромок трубной заготовки и предназначенной для использования в технологиях лазерной сварки. 3 ил.

Изобретение относится к способу гибридной лазерно-дуговой сварки. Формируют сварочную ванну одновременно электрической дугой и лазерным лучом путем расплавления металла присадочного материала в защитной среде, состоящей из инертного и активного компонентов. В качестве инертного компонента используют аргон. Присадочный материал используют в виде двух расходуемых проволок диаметром до 1,6 мм, которые вместе с защитной средой подают из одного сопла. Заполнение наружной части разделки кромок осуществляют путем одновременного плавления проволок заданного объема с формированием наружного валика. Изобретение позволяет повысить производительность процесса лазерно-гибридной сварки, уменьшить дефекты формируемого шва, а также повысить его механические свойства. 1 з.п. ф-лы, 1 ил.

Изобретение относится способу ремонта трубы с продольном швом. Ремонт включает обнаружение дефекта, выборку дефекта и заплавление выборки. Оборудование для обнаружения, выборки дефекта и заплавления выборки устанавливают с возможностью работы через блок управления в единой системе координат. При этом для обнаружения дефекта осуществляют ультразвуковой контроль путем сканирования вдоль линии шва с использованием ультразвуковых преобразователей до обнаружения дефекта, при котором строят координатную модель дефекта, данные которой используют для задачи параметров выборки, которые вводят в блок управления, осуществляющий на стадии выборки дефекта позиционирование фрезерной головки, а на стадии заплавления выборки - позиционирование оптической лазерной головки, осуществляющей очистку зоны выборки, и позиционирование оборудования наплавки. Изобретение обеспечивает точное наведение ремонтного оборудования на зону дефекта шва трубы, нанесенного методом лазерной сварки, позволяет устранить любой дефект лазерного шва с минимальным объемом выборки, максимальным сохранением геометрии шва и минимизирует тепловложение в ремонтный участок сварного шва. 11 ил.

Изобретение относится к стыковой сварке металлопродукции, в частности к сварке продольных швов труб большого диаметра, кольцевых швов трубопроводов, а также швов трубопроводных изделий (отводов, тройников и т.д). Для улучшения микроструктуры сварного шва после лазерной или лазерно-дуговой сварки труб путем воздействия лазерным лучом на свариваемые участки труб до полного их проплавления осуществляют охлаждение зоны сварки. Охлаждение сварного шва выполняют в интервале от температуры Ms, где Ms - температура начала образования мартенсита, и до температуры не ниже Mf, где Mf - температура завершения образования мартенсита. Затем повторно нагревают до температуры Ms (+100…300)°С с дальнейшим окончательным охлаждением. При этом охлаждение производят на воздухе, или водой, или водовоздушной смесью. Повторный нагрев выполняют индукционным методом или лазером. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способам сварки продольных швов труб большого диаметра, применяемых преимущественно для строительства магистральных нефтепроводов и газопроводов, а также водоканалов и тепловых сетей. После стыковки кромок трубной заготовки выполняют прихваточный шов дуговой сваркой. Накладывают основной рабочий шов с переплавлением прихваточного шва лазерной или лазерно-дуговой сваркой. Затем выполняют внутренний и наружный облицовочные швы дуговой сваркой. Перед выполнением основного рабочего шва осуществляют подъем трубной заготовки до фиксированного положения посредством приводного механизма, связанного с блоком управления, на вход которого вводят значение угла наклона трубной заготовки. При помощи приводных опорных роликов, выполненных с возможностью размещения и поворота трубной заготовки на 360°, устанавливают стык кромок трубной заготовки в положение на 12 часов. Выполняют основной рабочий шов на подъем. Затем опускают трубную заготовку и выполняют либо наружный облицовочный шов на спуск, не меняя положения стыка кромок трубной заготовки, либо - внутренний облицовочный шов на спуск, предварительно установив стык кромок трубной заготовки в положение на 6 часов. 2 ил.

Изобретение может быть использовано для сварки толстостенных металлоконструкций, собранных между собой встык, в частности, при изготовлении стальных прямошовных труб для магистральных газо- и нефтепроводов с использованием лазерной или гибридной лазерно-дуговой сварки. Кромки трубной заготовки соединяют с использованием лазерной или гибридной лазерно-дуговой сварки в одну сварочную ванну. Сварку осуществляют при перемещении трубной заготовки относительно неподвижной сварочной головки в горизонтальной плоскости с введением в сварочную ванну ультразвуковых колебаний на протяжении всего цикла сварки. Ультразвуковой волновод устанавливают за лазерным лучом на расстоянии не более 50 мм от сварочной ванны, которое поддерживают в процессе сварки посредством скользящего контакта. Между волноводом и поверхностью трубы наносят контактную жидкость в виде воды или глицерина. Способ обеспечивает повышение качества сварного шва за счет снижения скорости кристаллизации металла в парогазовом канале, исключающего образование нежелательных закалочных структур в металле сварного шва. 1 з.п. ф-лы, 1 ил.

 


Наверх