Патенты автора Попов Юрий Александрович (RU)

Изобретение относится к области водоотведения, а также системам (устройствам) определения параметров процесса обработки сточных вод. Раскрыта система определения концентрации веществ в аэротенке, включающая аэротенк/аэротенки, вторичный отстойник/отстойники, аэрационную установку, модуль ввода характеристик аэротенка/аэротенков, модуль анализа диагностируемых параметров, блок определения времени нахождения сточной воды в компонентах аэротенка/аэротенков, блок ввода фактических значений расхода кислорода, подаваемого аэрационной установкой, блок определения концентраций веществ в сточной воде в компонентах аэротенка/аэротенков и блок вывода результатов. При этом модуль ввода характеристик аэротенка/аэротенков включает блок декомпозиции аэротенка/аэротенков, в котором осуществляется декомпозиция аэротенка/аэротенков на совокупность последовательно расположенных компонентов аэротенка/аэротенков, имеющих входной и выходной потоки и расположенных по ходу движения сточных вод от входного потока сточных вод, поступающих на очистку, до выходного потока. Система позволяет определять параметры процесса очистки сточных вод в аэротенке с учетом изменения параметров среды в ходе процесса, что позволяет повысить качество и надежность биологической очистки сточных вод за счет определения параметров и прогнозирования хода процесса при изменении входных параметров. 3 ил.

Система относится к области водоотведения, а также к системам управления процессом очистки сточных вод и может быть использована для при создании новых или реконструкции существующих станций очистки бытовых, концентрированных по органическим загрязнениям хозяйственно-бытовых и близких к ним по составу сточных вод. Система включает в себя трубопроводы подачи и отвода воды, отвода избыточного активного ила, блок биологической очистки, насос для откачки активного ила, аэраторы. Блок биологической очистки состоит из биореактора, выполненного в виде последовательно соединенных зон - анаэробной, аноксидной, аэробной, предназначенных для удаления азота и биологической дефосфотации, и отстойника. Первый рециркуляционный поток образован между аноксидной и анаэробной зонами, второй - между аэробной и аноксидной зонами, третий – между вторичным отстойником и аноксидной зоной биореактора. На первом рециркуляционном потоке установлен датчик контроля концентрации БПК. На первом, втором и третьем рециркуляционных потоках установлены расходомеры, запорно-регулирующая арматура с дистанционным управлением, датчики определения концентрации азота нитратов, азота аммонийного, фосфатов, датчиками температуры, датчики определения рН, датчики определения концентрации активного ила. Устройство снабжено блоками определения параметров поступающих сточных вод, первого, второго и третьего рециркуляционных потоков, очищенной воды. Также в устройстве содержатся модуль задания параметров, модуль сравнения и модуль управления параметрами. Модуль задания параметров содержит блок задания концентрации веществ в поступающих в анаэробную зону, блок задания концентрации веществ в поступающих в аноксидную зону, блок задания концентрации растворенного кислорода в аэробной зоне. Модуль сравнения содержит блоки сравнения концентрации в первом, втором и третьем рециркуляционных потоках, блок сравнения концентрации в трубопроводе подачи сточной воды, блок сравнения концентрации в трубопроводе отвода очищенной воды. Модуль управления параметрами содержит блок управления запорно-регулирующей арматурой, блок управления насосами, блок управления воздуходувкой. Технический результат: повышение качества биологической очистки сточных вод за счет корректировки параметров рециркуляционных потоков и поддержания оптимальных значений концентраций в системе биологической очистки сточных вод. 1 ил.

Система относится к области водоотведения, а также системам (устройствам) определения параметров процесса обработки сточных вод. Раскрыта система определения концентрации веществ во вторичном отстойнике, позволяющая определять и поддерживать параметры процесса очистки сточных во вторичном отстойнике с учетом изменения параметров среды. Технический результат: повышение качества биологической очистки сточных вод за счет определения и поддержания необходимого количества активного ила в системе биологической очистки. 2 ил.

Изобретение относится к области водоотведения. Устройство содержит кольца перекрытия, подвижную ферму илоскреба. Кольца перекрытия выполнены из сегментов, имеющих трапециевидную или прямоугольную форму. Сегменты колец перекрытия жестко закреплены между собой. Сегменты колец перекрытия выполнены из материалов, имеющих положительную плавучесть. Кольца перекрытия выполнены свободно плавающими на поверхности зеркала воды. Кольца перекрытия выполнены с возможностью концентричного вращения вокруг центральной оси отстойника. Кольца перекрытия выполнены с возможностью свободного вращения илоскреба, имеющего систему скребков и треугольную ферму. Сегменты колец перекрытия снабжены отбойной юбкой, агломерационными тонкослойными модулями, имеющими отрицательную плавучесть. Отбойная юбка расположена на внешнем и внутреннем периметре сегментов колец перекрытия. Количество колец перекрытия соответствует количеству зазоров между конструктивными элементами подвижной фермы илоскреба. Агломерационные тонкослойные модули присоединены к сегментам колец перекрытия жесткими подвесами. Обеспечивается повышение эффективности и надежности биологической очистки сточных вод. 4 ил.

Изобретение относится к области систем водоотведения. Система содержит блок транспортировки сточных вод, содержащий коллектор, сеть водоотведения, переливной трубопровод. Переливной трубопровод выполнен в виде участка сети. Система дополнительно снабжена регулирующим трубопроводом, компенсационным трубопроводом, механической решеткой с механизмом очистки механической решетки, электроприводом механизма очистки механической решетки, как минимум двумя датчиками уровня, входным и выходным колодцами, блоком управления механизмом очистки механической решетки, приемным резервуаром насосной станции канализационных очистных сооружений. Сеть водоотведения и/или коллектор соединены во входном колодце с компенсационным трубопроводом диаметром Dк. Компенсационный трубопровод соединен с регулирующим трубопроводом диаметром Dp в выходном колодце, Dк≥Dр. Выходной колодец и приемный резервуар насосной станции канализационных очистных сооружений соединены регулирующим и переливным трубопроводом. Лоток переливного трубопровода расположен выше шелыги регулирующего трубопровода. Механическая решетка с механизмом очистки расположена в выходном колодце. Датчики уровня расположены в выходном колодце до и после механической решетки. Выходы датчиков уровня соединены со входом блока управления механизмом очистки механической решетки. Выход блока управления механизмом очистки механической решетки соединен с электроприводом механизма очистки механической решетки. Обеспечивается повышение показателей экологической безопасности. 2 ил.

Изобретение относится к области водоотведения, а именно к способам моделирования аппаратов (устройств) биологической очистки сточных вод на канализационных очистных сооружениях. Способ определения концентрации рециркулирующего ила в системе биологической очистки сточных вод включает декомпозицию вторичного отстойника/отстойников на совокупность концентрически расположенных n подэлементов, имеющих первый и второй выходные потоки, n≥1, и расположенных по ходу движения входного потока от центра во все стороны в радиальном направлении. Затем определяют массовый расход ила во входном потоке вторичного отстойника/отстойников, расходы первого и второго выходного потоков концентрических подэлементов вторичного отстойника/отстойников, скорости осаждения i-ой фракции ила, оседающей в i-ом подэлементе вторичного отстойника, массовый расход ила в первом и втором выходных потоках i-го подэлемента вторичного отстойника, массовый расход ила в первом и втором выходных потоках вторичного отстойника, и концентрации ила в первом и втором выходном потоке вторичного отстойника. Предложенный способ определения концентрации загрязнений в очищенных сточных водах и концентрации ила в рециркуляционном потоке системе биологической очистки сточных вод позволяет определять концентрации веществ в потоках с учетом происходящих процессов в аппаратах (устройствах), что обеспечивает повышение качества и надежности биологической очистки сточных вод. 4 ил.

Изобретение относится к охране окружающей среды. Устройство для разделения активного ила на фракции содержит корпус 1, образованный вертикальной боковой стенкой 2 и дном 3, опору 4, ферму 5, присоединенную к опоре 4 и выполненную с возможностью поворота относительно неё, подводящий 6 и отводящий 7 трубопроводы, средство 8 для отвода осветленной жидкой среды, систему 9 для сбора ила, запорно-регулирующую арматуру 21, выполненную с возможностью дистанционного изменения количества ила, подаваемого на обработку и/или в рециркуляционный поток, сборный канал 22 и соединённый с ним второй отводящий трубопровод 23. Система 9 для сбора ила выполнена в виде по меньшей мере двух илососов 10 и системы трубопроводов 13. Каждый из илососов 10 выполнен в виде илосборника 14, расположенного на дне корпуса 1, илового насоса 15 и вертикального трубопровода 16. Система трубопроводов 13 выполнена в виде горизонтальных трубопроводов, жестко закрепленных на вращающейся ферме 5, в количестве, равном количеству илососов 10, с возможностью подачи ила на обработку и/или в рециркуляционный поток. Илососы 10 присоединены к горизонтальным трубопроводам через подвижные соединения 20, выполненные в виде гофрированных резиновых патрубков, и выполнены с возможностью перемещения вдоль оси горизонтальных трубопроводов. Иловые насосы 15 выполнены с возможностью изменения расхода перекачиваемого ила. Устройство позволяет сепарировать активный ил на объемы, содержащие активный ил разного возраста, что повышает эффективность биологической очистки сточных вод за счет использования активного ила с высокими окислительными свойствами. 3 ил.

Устройство относится к измерительной технике, а именно к измерению градиента температуры объектов с помощью термопар, и может быть использовано в отраслях промышленности и научного эксперимента в составе автоматизированных систем управления (АСУ) в условиях высокого уровня электрических помех. Как правило, задача АСУ сводится к автоматической регулировке температуры объекта таким образом, чтобы значение градиента между выбранными точками имело минимальное значение или поддерживалось на заданном уровне. Заявлено устройство для измерения малых разностей температур, в котором средняя точка соединения дифференциальной термопары подключена к общей точке измерительного узла, в качестве которого установлен инструментальный усилитель разности с симметричными входами, а межу дифференциальной термопарой и инструментальным усилителем разности установлено переключающее управляемое реле с возможностью отключения дифференциальной термопары и подключения вместо нее резисторов, значения которых эквивалентные сопротивлениям термопары. Технический результат - увеличение помехоустойчивости по отношению к внешним электромагнитным воздействиям, повышение точности измерений малых разностей температур, обеспечение возможности использования в системах автоматизированного управления, а также расширение функциональных возможностей. 1 з.п. ф-лы, 1 ил.

Способ относится к области водоотведения, а также к способам моделирования аппаратов (устройств) биологической очистки сточных вод на канализационных очистных сооружениях. Система биологической очистки содержит камеры смешения, аэротенки, отстойники. Аэротенк делится на зоны анаэробной обработки и оксидной обработки. Указанные зоны делятся на подэлементы. Концентрации загрязнений в очищаемых сточных водах и концентрации веществ в системе биологической очистки сточных вод определяют в потоках с учетом происходящих процессов в аппаратах (устройствах) внутри каждого элемента. При этом выходной поток подэлемента является входным потоком последующего подэлемента системы. Технический результат: расширение области применения способа очистки сточных вод, повышение качества и надежности биологической очистки сточных вод. 3 ил.

Система относится к области водоотведения и/или водоснабжения для оптимизации инвестиционных потоков при модернизации (реконструкции) систем водоотведения и/или водоснабжения. Технический результат заключается в обеспечении оптимального выбора последовательности вовлечения элементов системы водоотвода и или водоснабжения с учетом фактических и эталонных значений показателей, получаемых в результате эксплуатации. Система включает модуль анализа диагностируемых параметров с возможностью ввода фактических значений, модуль определения эксплуатационных затрат и модуль определения оптимальной выборки. 4 ил.

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении арсенала технических средств. Система содержит два объекта управления, модуль анализа диагностируемых параметров, содержащий блок анализа диагностируемых параметров, блок ввода эталонных диагностируемых параметров, причем в качестве объектов управления принимают системы водоотведения, блок анализа диагностируемых параметров выполнен с возможностью ввода фактических значений целевых показателей надежности, качества, энергетической эффективности объектов управления, блок ввода эталонных диагностируемых параметров выполнен с возможностью ввода плановых значений целевых показателей надежности, качества, энергетической эффективности объектов управления, а система дополнительно снабжена модулем ввода характеристик объекта управления, модулем определения эксплуатационных затрат объектов управления, содержащим блок определения эксплуатационных затрат объектов управления при фактических значениях целевых показателей надежности, качества. 5 ил.

Изобретение относится к области измерения температуры посредством термометрических электрических датчиков и предназначено для одновременного измерения и регистрации значений температуры грунтов в нескольких точках объекта в зависимости от его конструкции, в частности в термометрических скважинах любого типа в полевых условиях, проведения стационарных и лабораторных исследований температурного режима талых, мерзлых, охлажденных и промерзающих/оттаивающих грунтов, организации сети для мониторинга теплового режима грунтов с большим количеством точек наблюдения, в том числе в пожаро-, взрывоопасных и агрессивных средах. Предлагаемое устройство включает температурные датчики, которые подпаивают непосредственно к проводам гибкого кабеля, запрессовывают в расплавленный материал на основе полиэтиленовой композиции той же марки, что и оболочка кабеля, образуя, при этом, гибкую, герметичную, монолитную конструкцию, которая оснащена разъемом, в корпусе которого установлена электронная печатная плата, содержащая служебную информацию, включая поправочные коэффициенты на каждый температурный датчик. Технический результат - повышение точности измерения температурного режима скважин различного типа, повышение надежности устройства при работе в пожаро-, взрывоопасных и агрессивных средах, а также увеличение срока службы устройства и расширение диапазона его использования. 8 з.п. ф-лы, 2 ил.

Изобретение относится к антенной технике. Технический результат - устранение наличия «мертвой зоны» в области углов места, примыкающих к зениту, для азимутально-угломестного режима и в области углов места, примыкающих к горизонту, для угломестно-угломестного режима с сохранением возможности уравновешивания массы зеркальной антенны при помощи противовесов. Трехосное опорно-поворотное устройство содержит азимутальный поворотный механизм, состоящий из колонны в виде стальной трубы с закрепленным на ней азимутальным силовым приводом, вокруг которого на подшипниках вращается азимутальная ферма, и угломестный поворотный механизм, состоящий из угломестного силового привода и угломестной поворотной платформы, состоящей из угломестной оси в виде стальной трубы и приваренной к ней первой стальной плиты, к которой пристыковывается балка с двумя опорами вращения зеркала, и второй стальной плиты, приваренной с противоположной стороны к угломестной оси, к которой крепится противовес и кронштейн крепления винтового домкрата, кронштейн крепления проушины домкрата, закрепленный на зеркале, винтовой домкрат с приводом, при этом азимутальный и угломестный поворотные механизмы и механизм угла наклона снабжены датчиками углового положения. 2 ил.

 


Наверх