Патенты автора Мазеева Алина Константиновна (RU)

Изобретение относится к способу получения износостойкого покрытия из высокоэнтропийного сплава с поверхностно науглероженным слоем и может быть использовано для создания защитного покрытия и ремонта изношенных деталей. Берут как минимум 5 элементов из Cr, Mo, Nb, W, V, Co, Fe, Mn, Ni с чистотой состава 99,5% в соотношении 5-35% каждого элемента, смешивают в боксе при вакууме с продувкой аргона и помещают в аттритор. Соотношение массы исходной смеси порошков к массе шаров 1:10-1:40. Механическое легирование проводят в течение 5-25 часов при 150-350 об/мин. После чего полученные однородные по химическому составу порошки просеивают, отделяют фракции 20-60 мкм, 60-100 мкм, 100-150 мкм и осуществляют низкотемпературную плазменную сфероидизацию в среде аргон-водородной смеси. Сфероидизированную фракцию 60-120 мкм выделяют из массы порошка и отправляют в воздушный классификатор для удаления самой мелкой фракции. Наплавку порошка осуществляют на подложку прямым лазерным выращиванием в атмосфере защитного аргона. После нанесения материала на подложку деталь помещают в карбюризатор из древесного угля и проводят цементацию. Полученное покрытие с поверхностно науглероженным слоем из высокоэнтропийного сплава обладает пористостью менее 1% с максимальным размером пор 2 мкм, твёрдостью более 800 HV, высокой износостойкостью, что позволяет эксплуатировать детали с наплавкой в условиях повышенного износа. 1 пр.
Изобретение относится к области порошковой металлургии и металлургии цветных металлов, в частности к способам получения порошков на основе никелида титана сферической формы для общих металлургических применений и аддитивных технологий. Способ получения порошков никелида титана сферической формы включает механический размол в аттриторе в атмосфере аргона исходных порошков и последующую низкотемпературную плазменную сфероидизацию, причем на этапе механического размола проводят механическое легирование порошка, для чего порошки Ti и Ni чистотой не менее 99,9 мас.% смешивают в соотношении: Ti - 49-50 ат.%, Ni - 50-51 ат.%, при этом первую партию порошка, полученного в аттриторе удаляют, затем загружают новую партию смеси порошков и обрабатывают ее в аттриторе с добавлением размольных тел размером 5-15 мм, при отношении массы смеси к размольным телам 1:10-1:30 в течение 5-25 часов в атмосфере аргона со скоростью вращения ворошителя от 200 до 270 об/мин, производят классификацию порошка с выделением фракций 15-63 и 63-125 мкм и осуществляют плавление в струе низкотемпературной плазмы в среде газов аргона и водорода и/или гелия при мощности высокочастотного индукционного плазмотрона от 10 до 15 кВт, расходе защитного газа от 30 до 40 стандартных литров в минуту, расходе плазмообразующего газа от 10 до 15 стандартных литров в минуту, расходе водорода от 3 до 4 стандартных литров в минуту, давлении в камере от 0,68 до 1,1 атмосферы, расходе несущего газа от 2 до 4 стандартных литров в минуту, расходе порошка от 0,5 до 3,5 кг/ч. Изобретение направлено на получение беспористого порошка NiTi высокой степени сфероидизации. 2 з.п. ф-лы, 1 пр.
Изобретение относится к области порошковой металлургии, в частности к способам получения металлических порошков высокоэнтропийных сплавов с эффектом памяти формы. Может использоваться для общих металлургических применений и аддитивных технологий. Элементные порошки Ti, Ni, Hf, Со, Cu и Zr с чистотой не менее 99,9%, взятые в соотношении, соответствующем формуле (Ti,Zr,Hf)50Ni50-x-yCoxCuy, где 0≤х≤25, 0≤у≤25, смешивают на воздухе и добавляют порошок Zr в боксе в атмосфере высокочистого аргона. Полученную смесь подвергают обработке в аттриторе с добавлением размольных тел размером 5-15 мм при отношении массы материала к размольным телам в диапазоне 1:10-1:30 и изопропилового спирта в инертной атмосфере в течение 5-25 часов со скоростью вращения ворошителя от 200 до 270 об/мин с получением предварительно легированного порошка. Плазменную сфероидизацию проводят в потоке низкотемпературной плазмы с использованием плазмообразующей смеси газов аргона и водорода при мощности плазмотрона от 10 до 15 кВт, расходе несущего газа от 2 до 4 стандартных литров в минуту, расходе порошка от 0,5 до 3 кг/ч, с последующим охлаждением в струе аргона. Обеспечивается получение беспористого порошка сферической формы, высокой текучестью, однородностью заданного химического состава с минимальными выделением вторичных фаз и намолом. 2 з.п. ф-лы, 1 пр.
Изобретение относится к порошковой металлургии и обработке цветных металлов и может быть использовано в аддитивных технологиях для создания качественных конечных изделий сложной формы и при получении керамических изделий. Берут 4-6 исходных элементных порошков из ряда Ti, V, Zr, Nb, Hf, Ta, W, Mo чистотой не менее 99,5% в эквиатомном соотношении и смешивают их в гравитационном смесителе на воздухе. Полученную смесь помещают в планетарную мельницу или аттритор с добавлением размольного агента - этанола, изопропанола или полиметилметакрилата, и размольных шаров диаметром 5-15 мм, при массовом отношении смеси к размольным шарам (1:10)-(1:40), соответственно. После этого проводят механическое легирование в течение 1-50 ч в атмосфере аргона при скорости вращения главного диска планетарной мельницы 100-400 об/мин и её стаканов - 100-1200 об/мин или со скоростью вращения ворошителя аттритора 100-600 об/мин. Сформированный однородный по химическому составу высокоэнтропийный сплав просушивают в вакууме при 90-130°С в течение 1-2 ч, охлаждают на воздухе до температуры окружающей среды и отсеивают от размольных шаров. Далее из порошка выделяют фракции 15-63 и 63-125 мкм. Затем проводят их низкотемпературную плазменную сфероидизацию и карбидизацию, используя в качестве рабочей атмосферы струю плазмы аргон-ацетиленовой смеси, которая является плазмообразующим газом. Полученные капли расплава охлаждают в струе несущего газа, в качестве которого используют аргон. Сформированные частицы порошка ультравысокотемпературного высокоэнтропийного карбида имеют сферическую или округлую форму с фактором формы не более 1,6 и размер 20-120 мкм, характеризуются высокой текучестью и нулевой пористостью. 5 з.п. ф-лы.

Изобретение относится к многослойным покрытиям, используемым в радиоэлектронной и приборостроительной технике, в частности, при создании экранов для защиты от воздействия внешних магнитных и электромагнитных полей естественного и искусственного происхождения различных биологических и технических объектов. Технический результат состоит в создании по сечению многослойного экрана градиента магнитных характеристик (магнитной проницаемости и индукции насыщения) и ослабление за счет этого магнитного и электромагнитного поля промышленной частоты в широком диапазоне напряженности экранируемого поля с коэффициентом экранирования не менее 120 и достигается за счет многослойной конструкции экранирующего материала, включающего в себя чередующиеся магнитные и немагнитные непроводящие слои. При этом проницаемость магнитных слоев растет от слоя к слою при удалении от экранируемого источника магнитного и электромагнитного излучения. А индукция насыщения увеличивается от внешних слоев - к внутренним. 1 з.п. ф-лы.

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной диэлектрической пленки с металлической лентой и подвергают совместному формованию, металлическую ленту подвергают предварительной термической обработке при температурах 300-380°С в течение 5-90 мин с целью создания состояния с положительной магнитострикцией насыщения за счет образования нанокристаллической структуры, при этом во время формования к ленте прикладывают растягивающее напряжение 1-100 МПа, а непосредственно после формования металлополимерный материал охлаждают от температуры формования до температуры на 10-20°С ниже комнатной, выдерживают 10-60 минут и после выдержки одновременно снимается внешнее растягивающее напряжение, приложенное к ленте, и производится нагрев материала до комнатной температуры. Технический результат заключается в повышении магнитной проницаемости материала и коэффициента экранирования. 1 з.п. ф-лы, 1 табл.
Изобретение относится к порошковой металлургии, в частности к получению нанокристаллических магнитомягких порошковых материалов. Может использоваться для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов. Исходный материал в виде аморфной ленты из магнитомягких сплавов подвергают термической обработке при температуре (0,35-0,37)Tликвидуса в течение 30-90 мин с последующим охлаждением на воздухе. Термообработанную ленту измельчают в высокоскоростном дезинтеграторе до получения порошка нанокристаллической структуры с размером фракции 15-35 мкм. Обеспечивается повышение эффективности получения порошка при сохранении высокой магнитной проницаемости.

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер. Композиционный материал для защиты от электромагнитного излучения состоит из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, отличается тем, что он представляет собой многослойную конструкцию, каждый слой которой выполнен из указанного состава, а содержание частиц сплава в каждом слое составляет 70-90 мас.% и ограничено определенным диапазоном размеров частиц из непрерывного ряда 1-200 мкм с увеличением размерности частиц в каждом последующем слое. Техническим результатом изобретения является увеличение рабочего диапазона частот материала от 100 МГц до 10 ГГц с сохранением низких значений коэффициента отражения и высоких значений магнитной проницаемости. 2 з.п. ф-лы, 1 табл., 2 ил., 2 пр.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы. Нанокомпозит на основе никеля для нанесения покрытий методами гетерофазного напыления содержит, мас.%: хром - 10,0-20,0, молибден - 25,0-45,0, кремний - 6,0-9,0, алюминий - 7,5-10,0, цинк - 1,5-2,0, TiC - 2,0-4,0, никель - остальное. Нанокомпозит получен при введении Al и Zn в виде лигатуры при соотношении компонентов 5:1 соответственно, а TiC - в виде наночастиц размером 60-80 нм. Повышается микротвердость и адгезионная прочность сплава на основе никеля. 1 з.п. ф-лы, 2 пр.

 


Наверх