Патенты автора Колдаев Антон Викторович (RU)

Изобретение относится к металлургии, а именно к способам производства холоднокатаного проката из сверхнизкоуглеродистых IF-сталей, который может быть использован в автомобильной промышленности. Способ производства холоднокатаной полосы из IF-стали включает выплавку стали, разливку, горячую прокатку с получением полос, травление, смотку полос в рулоны, холодную прокатку полос, рекристаллизационный отжиг в агрегате непрерывного отжига и дрессировку. Выплавляют сталь, содержащую, мас. %: С 0,002-0,005, Si 0,01-0,020, Mn 0,06-0,15, Al 0,02-0,05, Ti 0,04-0,07, Fe и неизбежные примеси остальное, горячую прокатку заканчивают при температуре 900-920°С, а рекристаллизационный отжиг холоднокатаной полосы проводят при температуре 850-870°С, причем скорость движения полосы в агрегате непрерывного отжига составляет не более 90 м/мин. Обеспечивается повышение пластичности холоднокатаного проката, стабильности его прочностных характеристик, а также коррозионной стойкости при сохранении высоких показателей штампуемости. 3 табл., 2 пр.

Изобретение относится к области металлургии, а именно к производству холоднокатаного проката из IF-сталей, который используют в автомобильной промышленности. Для обеспечения уровня свойств, соответствующих сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при сохранении высоких показателей пластичности и штампуемости осуществляют выплавку стали, содержащей, мас. %: С 0,002-0,006, Si 0,005-0,020, Mn - 0,08-0,13, Al - 0,03-0,06, Ti - 0,03-0,08, Fe и неизбежные примеси - остальное, разливку, горячую прокатку с температурой конца прокатки 900-930°С, травление, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в агрегате непрерывного отжига, при этом рекристаллизационный отжиг ведут путем нагрева до 830-840°С для проката с минимальным значением относительного удлинения 39-40% и до 850-860°С для проката с минимальным значением относительного удлинения 42-44%, выдержки и охлаждения до температуры перестаривания, причем температуру начала перестаривания назначают в соответствии с зависимостью Тп.н.≤[920-12,5хδтр..], где Тп.н. - температура начала перестаривания, °С, δтр. - требуемая минимальная величина относительного удлинения, %; 920 и 12,5 - эмпирические коэффициенты, и проводят дрессировку. 3 табл.

Изобретение относится к области металлургии, а именно к способу производства холоднокатаного проката из сверхнизкоуглеродистых IF-сталей (Interstitial Free - сталь без атомов внедрения), который может быть использован в автомобильной промышленности. Для получения из стали проката с уровнем свойств, соответствующим сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при сохранении высоких показателей пластичности и штампуемости осуществляют выплавку стали, разливку, горячую прокатку, травление, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи и дрессировку, при этом выплавляют сталь унифицированного химического состава, содержащую, мас.%: С - 0,002-0,006, Si - 0,005-0,020, Mn - 0,08-0,13, Al - 0,03-0,06, Ti - 0,03-0,08, Fe и неизбежные примеси - остальное, температуру конца горячей прокатки в черновой группе клетей непрерывного широкополосного стана назначают в соответствии с зависимостью Ткчп ≤ 830 [Ti]+1025, где Ткчп - температура конца прокатки, °С, [Ti] - содержание титана, мас.%, 830 и 1025 - эмпирические коэффициенты, температуру смотки горячекатаных полос назначают в соответствии с зависимостью Тсм=[15δТР +50]±15°С, где Тсм - температура смотки, °С, δТР - требуемая минимальная величина относительного удлинения, %, 15 и 50 - эмпирические коэффициенты, а температуру рекристаллизационного отжига в колпаковой печи назначают в соответствии с зависимостью Тотж=[5δТР +490]±10°С, где ТОТЖ - температура рекристаллизационного отжига, °С, δТР - требуемая минимальная величина относительного удлинения, %, 5 и 490 - эмпирические коэффициенты. 3 табл.

Изобретение относится к области металлургии, конкретно к способам производства сортового круглого проката из легированных сталей для изготовления крепежных изделий холодной объемной штамповкой. Для повышения механических свойств проката осуществляют нагрев заготовки до температуры 1080-1200°С, горячую прокатку с температурой конца прокатки в диапазоне 900-1050°С и регламентируемое охлаждение, при этом охлаждение после прокатки ведут со скоростью 0,1-5°С/с до Тохл=541,1-144,3[С] - 94,5[Si] - 24,6[Mn] - 9,6[Cr] - 4,84[Ni] - 52,0[Мо]±20°С, а окончательное охлаждение ведут с произвольной скоростью. Охлажденный прокат подвергают сфероидизирующему отжигу при Тотж=688,8+20,4[Si] - 13,5[Mn]+17,7[Cr] - 13,8[Ni]+6,5[Мо]±10°С. Прокат получают из стали, содержащей, мас. %: углерод 0,09-0,47, кремний 0,17-0,40, марганец 0,30-0,94, хром 0,4-1,35, никель до 0,8, молибден 0,1-0,3, сера не более 0,045, фосфор не более 0,035, железо и неизбежные примеси остальное. 3 табл., 1 пр.

Изобретение относится к области металлургии, конкретно к способу производства сортового круглого проката из легированных сталей для изготовления крепежных изделий холодной объемной штамповкой. Для повышения механических свойств проката проводят нагрев заготовки до температуры 1080-1200°С, горячую прокатку с температурой конца прокатки в диапазоне 900-1050°С и регламентируемое охлаждение, при этом охлаждение после прокатки ведут со скоростью 0,5-5°С/с до температуры Тохл., последующее охлаждение осуществляют со скоростью 0,01-0,4°С/с. до 400-600°С, а затем последующее охлаждение ведут с произвольной скоростью, при этом температуру охлаждения Тохл определяют в зависимости от состава стали по соотношению: Тохл=688,8+20,4[Si] - 13,5[Mn]+17,7[Cr] - 13,8[Ni]+6,5[Мо]±10°С. Прокат производят из стали, содержащей, мас. %: углерод 0,09-0,47, кремний не более 0,40, марганец 0,30-0,94, хром 0,4-1,35, никель до 0,8, молибден 0,15-0,26, сера не более 0,045, фосфор не более 0,035. медь не более 0,30, железо и неизбежные примеси - остальное. 3 табл.

Изобретение относится к области черной металлургии. Для изготовления изделий сложной формы разной категорией прочности с высокими показателями временного сопротивления, предела текучести, хладостойкости, коррозионной стойкости, высокой пластичности и свариваемости горячекатаный стальной лист нагревают до 900-960°C со скоростью не более 7°C/с, выдерживают в течение 4-5 мин, штампуют и охлаждают в штампе со скоростью 30-80°C/с для получения горячештампованого изделия, имеющего временное сопротивление до 2200 Н/мм2, при этом стальной лист получают из борсодержащей стали, легированной Si-Mn-Cr и микролегированной Ti-Nb-V или построенной по принципу низкоуглеродистой мартенситной стали, легированной Si-Mn-Cr-Ni и микролегированной Mo-Ti-Nb-V. Изделие имеет временное сопротивление 800-1300 Н/мм2. 3 з.п. ф-лы, 2 табл.

Изобретение относится к области черной металлургии. Для получения изделий сложной формы и обеспечения высоких показателей временного сопротивления, предела текучести, хладостойкости, коррозионной стойкости, высокой пластичности и свариваемости отожженный холоднокатаный стальной лист нагревают до температуры 890-950°C со скоростью не менее 6°C/с, выдерживают при упомянутой температуре в течение 4-5 минут, затем подвергают горячей штамповке и охлаждают в штампе со скоростью 30-80°C/с для получения изделия, имеющего временное сопротивление до 2200 Н/мм2. 5 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочной коррозионно-стойкой плакированной стали, используемой для изготовления сварных конструкций и оборудования, применяемых в нефтеперерабатывающей, нефтехимической, химической, коксохимической и других отраслях промышленности. Плакированная сталь состоит из плакирующего слоя, выполненного из коррозионно-стойкой аустенитной стали, и основного слоя, выполненного из низкоуглеродистой высокопрочной микролегированной стали. Сталь основного слоя содержит компоненты в следующем соотношении, мас.%: С 0,070-0,120, Si 0,10-0,50, Mn 0,5-2,0, Р ≤0,03, S ≤0,005, Al 0,015-0,09, Nb 0,04-0,08, Ti 0,02-0,04, Cr ≤0,50, N ≤0,01, V 0,03-0,06, В 0,002-0,005, железо и неизбежные примеси остальное. Содержания титана и азота, ниобия и углерода связаны зависимостями: [Ti]/[N]=4-8 и [Nb]⋅[C]=0,004-0,008. Обеспечивается требуемый комплекс технологических и служебных свойств, а именно сплошность и прочность соединения слоев - не менее 450 Н/мм2, прочность - не менее 850 Н/мм2, хладостойкость KCU-70°C - не менее 80 Дж/см2, коррозионная стойкость, свариваемость и пластичность. 2 табл.

Изобретение относится к области черной металлургии, а именно к конструкционным горячекатаным сталям, предназначенным для изготовления высокопрочных стальных деталей сложной формы способом горячей штамповки, в том числе элементов конструкции автомобиля. Сталь содержит, мас.%: углерод 0,08-0,3, кремний 0,20-1,0, марганец 0,60-2,0, хром 0,60-1,80, никель 0,02-0,8, молибден 0,001-0,30, титан 0,02-0,08, ванадий 0,002-0,08, ниобий 0,038-0,07, бор 0,0001-0,004, медь 0,05-0,20, алюминий 0,01-0,09, азот 0,006-0,015, фосфор ≤0,03, сера ≤0,015, железо и неизбежные примеси, в том числе водород ≤0,0004, остальное. Сталь имеет однородную дисперсную феррито-перлитную структуру с баллом зерна феррита 9-11, а содержания титана и азота, ниобия и углерода связаны зависимостями: 2,0≤[Ti]/[N]≤5,5 и 0,003≤[Nb]·[C]≤0,012. Обеспечивается высокая прочность после горячей штамповки. 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочной коррозионно-стойкой плакированной стали, используемой для изготовления сварных конструкций и оборудования, применяемых в нефтеперерабатывающей, нефтехимической, химической, коксохимической и других отраслях промышленности. Плакированная сталь состоит из плакирующего слоя, выполненного из аустенитной коррозионно-стойкой стали, и основного слоя, выполненного из низкоуглеродистой высокопрочной микролегированной стали. Сталь основного слоя содержит, мас.%: C 0,04-0,07, Si 0,10-0,50, Mn 0,5-2,0, Al 0,015-0,09, Mo 0,10-0,27, Ti 0,10-0,20, Cr ≤0,5, P ≤0,03, S ≤0,005, железо и неизбежные примеси, в том числе азот с содержанием не более ≤0,01 мас. %, остальное. Содержание молибдена в стали основного слоя определяется в зависимости от содержания титана в соответствии с зависимостью [Мо]=(1÷1,35)[Ti], способствующей образованию объемной системы наноразмерных выделений комплексных карбидов (Ti, Mo)C. Обеспечиваются высокие свариваемость, прочность, пластичность, хладостойкость и коррозионная стойкость. 2 табл.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы. Нанокомпозит на основе никеля для нанесения покрытий методами гетерофазного напыления содержит, мас.%: хром - 10,0-20,0, молибден - 25,0-45,0, кремний - 6,0-9,0, алюминий - 7,5-10,0, цинк - 1,5-2,0, TiC - 2,0-4,0, никель - остальное. Нанокомпозит получен при введении Al и Zn в виде лигатуры при соотношении компонентов 5:1 соответственно, а TiC - в виде наночастиц размером 60-80 нм. Повышается микротвердость и адгезионная прочность сплава на основе никеля. 1 з.п. ф-лы, 2 пр.

 


Наверх