Патенты автора Бражкин Вадим Вениаминович (RU)

Изобретение относится к приборостроению в экспериментальной физике и технике и касается экранирования нежелательного рентгеновского излучения при проведении экспериментов по дифракции рентгеновского излучения для исследования кристаллических структур химических соединений при высоком давлении и высокой температуре с использованием камер высокого давления с алмазными наковальнями, оборудованных нагревательным элементом. Технический результат - возможность изготовления коллиматора, который позволит проводить дифракционные эксперименты при высоком давлении и высокой температуре. Для изготовления коллиматора рентгеновского излучения используют устройство, содержащее два пуансона 1 и размещенный между ними вкладыш 2 из керамического материала, профиль которого повторяет профиль пуансонов 1. Вкладыш 2 имеет в центральной части форму чечевицы, а на периферии форму тора, по центральной оси которых в пуансонах 1 и вкладыше 2 выполнены отверстия, образующие единое сквозное отверстие, диаметр которого равен внешнему диаметру металлического капилляра 5, который размещают в сквозном отверстии. Сдавливают пуансоны 1 прессом с обеспечением передачи давления, создаваемого во вкладыше 2, на капилляр 5, обжатия капилляра 5 и уменьшения его внутреннего диаметра в зоне обжатия. Извлекают капилляр 5 из устройства и разрезают поперек в зоне обжатия с получением двух одинаковых коллиматоров. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области синтеза новых материалов, а именно к материалу на основе тетраборида хрома, фазовый состав которого включает тетраборид хрома, диборид хрома и связующее вещество, при этом содержание этих компонентов составляет: CrB4 - 45-60%, CrB2 - 25-45%, связующее вещество - 10-15%, где связующее вещество представляет собой борид металла или смесь боридов металла, выбранного из группы кобальт, медь, никель, алюминий. Также предложены вариант материала на основе тетраборида хрома, способ получения материала, пластина, режущий инструмент, буровой инструмент и способ бурения подземных пород. Техническим результатом изобретения является обеспечение высокой износостойкости, термостойкости, твердости и одновременно высокой прочности на изгиб и сжатие. 9 н. и 56 з.п. ф-лы, 3 ил., 2 табл., 2 пр.

Изобретение относится к порошковой металлургии, в частности к прессованию порошковых смесей металлокерамических, минералокерамических и тугоплавких материалов. Может использоваться для изготовления изделий больших размеров и сложной формы. Порошок тугоплавкого материала, представляющего собой сплав на основе тугоплавкого металла, или металлокерамический сплав, или оксидную керамику с размером зерен от 3 мкм до 30 мкм, подвергают холодному изостатическому прессованию без пластификатора при давлении от 0,8 до 1,5 ГПа. Обеспечивается получение порошковых пресс-заготовок с высокой плотностью до 70% и со значительной долей зерен с субмикронным размером. 3 пр., 2 ил.

Изобретение относится к области синтеза алмазов, которые могут быть использованы для получения проводящих и сверхпроводящих композитов. Для этого в качестве источника углерода берут наноглобулярный углерод с размером частиц 20-70 нм, а в качестве источника бора рентгеноаморфный бор с размером частиц менее 2 мкм в атомном соотношении бор/углерод от 1/10 до 1/20, смешивают с использованием этилового спирта с наложением ультразвука, высушивают на воздухе при 100°С в течение 1 ч, обрабатывают при давлении 3-6 ГПа и температуре 1400-1700°С в течение 60 с, затем обрабатывают при давлении 8 ГПа и температуре 1600-1800°С в течение 60 с. Способ позволяет получать порошки алмазов высокой твердости, легированные бором в концентрации выше 1021 атом/см-3 и имеющие микронные, около 1-10 мкм, и субмикронные, около 0,1-1 мкм, размеры частиц. 4 ил., 3 пр.

Изобретение может быть использовано при изготовлении режущего инструмента. Способ получения поликристаллического алмазного материала включает помещение в реакционную ячейку камеры высокого давления в зоне максимальной температуры нагрева стержня из металла-катализатора, имеющего торцевую рабочую поверхность, и углеродосодержащего материала, образующего вокруг стержня оболочку. На реакционную ячейку воздействуют высоким давлением и температурой в области термодинамической стабильности алмаза. Торцевая рабочая поверхность стержня снабжена барьерным слоем. Барьерный слой выполнен из металла, имеющего температуру плавления выше температуры плавления металла-катализатора и не являющегося в условиях синтеза катализатором образования алмаза. Толщина барьерного слоя составляет 0,05-0,5 мм. Изобретение позволяет расширить область применения поликристаллического алмазного материала за счет уменьшения в полученном материале ослабленной переходной зоны при сохранении общих геометрических размеров алмазного поликристалла. 6 з.п. ф-лы, 7 ил., 1 пр.

Изобретение относится к способу получения поликристаллического алмазного материала с отверстием, проходящим в осевом направлении, который может служить заготовкой для изготовления волочильного инструмента. Способ включает помещение в реакционную ячейку 1 камеры высокого давления вставки 4 из металла-катализатора и в контакте со вставкой стержня 5, выполненного из металла с температурой плавления, превышающей температуру плавления металла-катализатора и смачиваемого металлом-катализатором. Реакционную ячейку 1 заполняют углеродосодержащим материалом 7, образующим оболочку со ступенчатым отверстием, при этом часть отверстия, в котором располагается металлический стержень 5, наиболее удаленная от вставки 4 металла-катализатора, выполнена в виде раструба, высота которого составляет 0,3-0,5 высоты стержня 5, а максимальный диаметр раструба составляет 1,2-1,5 диаметра стержня 5. Выполнение отверстия в углеродосодержащем материале 7 с раструбом позволяет увеличить высоту поликристаллического алмазного материала. 2 ил.

Изобретение относится к области синтеза новых материалов и может быть использовано в деятельности, связанной с добычей полезных ископаемых, с обрабатывающими производствами, с медицинской промышленностью, для элементов конструкций и механизмов, требующих высокой износостойкости поверхностей. Способ получения сверхтвердого материала на основе пентаборида вольфрама включает спекание порошка вольфрама и бора при повышенных температурах и давлениях. В качестве исходных материалов для синтеза используют вольфрам с размерами частиц 1-10 мкм, субмикронный бор с размерами частиц 0,1-0,5 мкм или соединение бора – М-карборан. Синтез осуществляют при давлениях 1,5-8 ГПа и температурах 1000-1500°С, при времени выдержки 1-10 минут, при этом количество вольфрама в смеси составляет 50-90 масс.%. Процесс спекания проводят в аппаратах типа Тороид или поршень-цилиндр. Обеспечивается получение нового сверхтвердого материала, сочетающего высокую твердость и термическую устойчивость с высокой вязкостью разрушения. 2 н. и 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится получению твердого сплава WC-Co. Способ включает прессование пластифицированной вольфрамокобальтовой порошковой смеси, отгонку пластификатора из полученной заготовки и ее жидкофазное спекание. Используют крупнозернистую с размером зерна от 3 до 20 мкм вольфрамокобальтовую пластифицированную порошковую смесь. Прессование ведут при низком изостатическом давлении от 0,2 до 0,4 ГПа, после отгонки пластификатора осуществляют прессование заготовки при высоком изостатическом давлении от 0,8 до 1,5 ГПа, а жидкофазное спекание заготовки ведут в течение 20-30 минут. Обеспечивается получение твердого сплава с высокой прочностью и уникальной пластичностью (до 7-9%) при сжатии. 1 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к области получения изделий из оксидной керамики и может быть использовано в медицинской и химической промышленности, в частности в качестве источников радиоактивного излучения при лечении раковых опухолей. Керамику из оксида иттербия получают путем формования заготовки из порошка оксида иттербия (Yb2O3) и последующей термической и термобарической обработки. Термобарическую обработку проводят в области термодинамической стабильности кубической фазы или моноклинной фазы оксида иттербия в диапазоне давлений от 2,0 до 8,0 ГПа и температурах в пределах 600-1500°C с выдержкой от 5 до 100 секунд. При реализации предлагаемого способа фазовый состав может целенаправленно меняться от чистой кубической до чистой моноклинной фазы при плотности керамики от 9,0 до 10,0 г/см3. Технический результат изобретения - получение прочной керамики с высокой плотностью, что позволяет повысить её радиационную активность и уменьшить габариты. 5 пр., 3 ил.

 


Наверх