Патенты автора Шекриладзе Майя Давидовна (RU)

Изобретение относится к области измерительной техники и может быть использовано для автоматизированного определения величины момента, создаваемого плоской спиральной пружиной или торсионом с неограниченным углом закрутки. Сущность изобретения заключается в том, что автоматизированный измеритель момента спиральных пружин дополнительно содержит постоянный магнит возврата диска, электромагнит, кронштейн и диск, закрепленный соосно на выходном вале, по обе стороны которого установлены с зазором постоянный магнит возврата диска и электромагнит, закрепленные на кронштейне, установленном на платформе, при этом вход электромагнита подключен к выходу блока управления параметрами переменного магнитного поля, причем полюса магнитных полей постоянного магнита возврата диска и электромагнита ориентированы соосно и направлены перпендикулярно к плоскостям диска. Технический результат – повышение точности измерения момента спиральных пружин. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения величины угловой скорости подвижных объектов в трех плоскостях вращения. Трехкомпонентный струйный преобразователь угловой скорости, содержит герметичный корпус 1, в котором размещена первая рабочая камера 2, в которой последовательно расположены нагнетатель 3 и блок 4 формирования ламинарной струи, а на ее выходе установлен первый анемочувствительный блок, включающий плоское основание 5, проницаемое для протекания струи и расположенное перпендикулярно направлению ее течения, на котором перпендикулярно установлены центральная стойка 6 и электропроводящие изолированные стойки 7, 8, 9, 10, расположенные друг относительно друга попарно-ортогонально и симметрично относительно центральной стоки 6 в плоскостях «xoz», «yoz» вращения объекта, при этом анемочувствительные элементы 11, 12, 13, 14 расположены перпендикулярно течению струи, первые концы которых электрически соединены между собой и закреплены на центральной стойке 6, а вторые концы соответственно каждого из анемочувствительных элементов 11, 12, 13, 14 закреплены на своих стойках 7, 8, 9, 10, вторую рабочую камеру 15, образованную внешней цилиндрической поверхностью первой рабочей камеры 4 и внутренней поверхностью корпуса 1, с получением криволинейного щелевого канала, симметрично сужающегося по криволинейной боковой поверхности к выходу по внешней поверхности первой рабочей камеры 2 и расположенного вдоль нее для обеспечения стесненного ламинарного потока с параболическим профилем распределения скоростей в поперечном сечении, вход которой пневматически связан выходом первой рабочей камеры 2, а на выходе установлен проницаемый для протекания струи второй анемочувствительный блок, после которого поток поступает на вход нагнетателя 3. Выходы первого анемочувствительного блока первой рабочей камеры 2 подключены к входам измерительной схемы 17 канала измерения составляющей угловой скорости ωх и измерительной схемы 18 канала измерения составляющей угловой скорости ωу измерительного блока 16, а выходы второго анемочувствительного блока второй рабочей камеры 15 подключены к входам измерительной схемы 19 канала измерения составляющей угловой скорости ωz измерительного блока 15, выходные сигналы которого являются выходными сигналами трехкомпонентного струйного преобразователя угловой скорости по составляющим угловой скорости ωx, ωу и ωz. Технический результат - повышение надежности и упрощение конструкции, упрощение установки пневматического нуля во второй рабочей камере и точности во времени экскплуатации за счет использования последовательной замкнутой пневматической цепи, что приводит к одинаковому расходу газа в обеих рабочих камерах, а также обладание компактными массогабаритными характеристиками. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области элементов контрольно-измерительных систем различного функционального назначения, реагирующих на взаимное механическое движение сочленений конструкции охраняемого изделия и преобразующих последнее в параметры нужного для последующего использования вида. Датчик контроля покоя подвижных конструктивных элементов содержит проводники 2 и 3, внешние контакты 4 и электронную измерительную схему с системой регистрации, третий проводник 1, выполненный сопряженным по форме с проводниками 2 и 3, с образованием пар, и касающийся с ними и являющийся частью цепи электронной измерительной схемы, состоящей из источника питания Uп, балластного резистора 5 Rбалластное и конденсатора 6 С, при этом проводники выполнены с возможностью движения относительно друг друга. Он может использоваться в системах охранной сигнализации дверей, окон, сейфов, транспорта и т.д., где имеются в конструкции взаимно подвижные плоские, цилиндрические, шарнирные и т.п. части конструкции или как автономное исполнение, причем позволяет повысить эффективность работы путем упрощения конструкции и повышения надежности, эффективно использоваться в системах охранной сигнализации объектов различного назначения, дешев и технологичен, возможна миниатюризация. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для автоматизированного определения величины момента, создаваемого плоской спиральной пружиной или торсионом с неограниченным углом закрутки. Сущность изобретения заключается в том, что измеритель выходных характеристик спиральных пружин дополнительно содержит магнитоэлектрические преобразователи, установленные симметрично и перевернуто ортогонально на концах плеч коромысла, каждый из которых содержит катушку и установленный соосно постоянный магнит, при этом обмотки катушек подсоединены последовательно к третьему и четвертому выходу электронного блока измерения, а магнитные полюса каждого из постоянных магнитов и катушек ориентированы друг относительно друга таким образом, что взаимодействия магнитных полей создают моменты, направленные на уравновешивание момента коромысла, создаваемого испытуемой пружиной, а выходной вал с опорами выходного вала закреплены на платформе, на которой установлены также уровень в горизонтальной плоскости платформы, шаговый двигатель, модуль закрепления исследуемой пружины, ортогонально упоры плеч коромысла, при этом платформа установлена на регулируемых по высоте опорах гашения вибраций, источник механических вибраций, вход которого подключен к выходу блока управления параметрами вибраций. Технический результат – повышение точности измерения выходных характеристик спиральных пружин. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества этапов технологического процесса изготовления пружин. Автоматизированный измеритель выходных характеристик спиральных пружин отличается тем, что в него введен шаговый двигатель 20, выходной вал 21 которого соединен с входным валом 5 измерительного блока, который установлен на опоре 25, модуль 19 управления шаговым двигателем 20, модуль 18 управления процессом контроля, входная шина которого соединена с выходной шиной регистратора 9, выход которого подключен к первому входу модуля 18 управления процессом контроля, второй вход связан с выходом компаратора 12, а первый выход подключен к управляющему входу ключа 16, второй выход подключен к установочному входу интегратора 17, третий выход соединен с установочным входом аналого-запоминающего блока 10, четвертый выход подключен к запускающему входу аналого-цифрового преобразователя 8, а выходная шина связана с входной шиной модуля 19 управления шаговым двигателем, выходная шина которого соединена с входной шиной шагового двигателя 20. Технический результат заключается в повышении эффективности работы, упрощении схемы задания пошагового угла закручивания пружины в процессе контроля и упрощении схемы управления процессом контроля и обработки результатов. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники. Отличительной особенностью заявленного автоматизированного измерителя выходных характеристик спиральных пружин является то, что в него введены шаговый двигатель, выходной вал которого соединен с входным валом измерительного блока, который установлен на опоре, модуль управления шаговым двигателем, второй электромагнит с сердечником, расположенным симметрично и перевернуто первому на втором конце коромысла, причем тяговые обмотки второго и первого электромагнитов соединены последовательно, в центре симметрии которого установлено зеркало оптической системы, модуль управления процессом контроля, входная шина которого соединена с выходной шиной регистратора, выход которого подключен к первому входу модуля управления процессом контроля, второй вход связан с выходом компаратора, а первый выход подключен к управляющему входу ключа, второй выход подключен к установочному входу интегратора, третий выход соединен с установочным входом аналого-запоминающего блока, четвертый выход подключен к запускающему входу аналого-цифрового преобразователя. Техническим результатом является повышение эффективности работы. 7 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для автоматизированного определения величины момента, создаваемого различными пружинами, и контроля качества этапов технологического процесса их изготовления. Устройство включает в себя стенд, выходной вал которого соединен с зажимом внутреннего конца испытуемой пружины, зажим наружного конца испытуемой пружины, связанный с входным валом стенда, соединенным в свою очередь через редуктор с электродвигателем, который подключен к выходу блока управления приводом, блок реверсирования, счетчик импульсов, вход которого связан с выходом датчика угла, а информационный выход с дешифратором конца измерения, компаратор, вход которого подключен к фотоприемнику, связанному с источником света через зеркало оптической системы, интегратор, выход которого связан со входом аналого-запоминающего блока, выход которого соединен с входом блока управления током, информационный выход которого подключен к входу аналого-цифрового преобразователя, информационный выход которого соединен с входом регистратора, а запускающий выход - с запускающим входом регистратора. Также оно включает регулировочное устройство, коромысло, подвижный балансировочный груз, тяговую обмотку электромагнита, подключенную к управляющим выходам блока управления током, сердечник электромагнита, установленный на первом плече коромысла, которое жестко закреплено на выходном валу стенда, а на втором плече коромысла установлено зеркало оптической системы и подвижный балансировочный груз, механически соединенный с регулировочным устройством, ключ, блок запуска измерения, узел сцепления, который связывает входной вал датчика угла с входным валом стенда, а его управляющий вход подсоединен к управляющему входу ключа. Технический результат заключается в повышении точности измерений момента, создаваемого пружиной, расширении диапазона измеряемых моментов, а также увеличении производительности. 4 з.п. ф-лы, 1 ил.

 


Наверх