Патенты автора Усов Сергей Васильевич (RU)

Изобретение относится к области авиационной техники, к способам формирования упрочняющего элемента из металломатричного композита на диске и/или барабане ротора газотурбинного двигателя. Способ упрочнения элемента в виде тела вращения ротора турбомашины металломатричным композитом включает послойную намотку керамических нитей на указанный элемент, подачу порошкового сплава на керамический слой из нитей и последующее сплавление сплава и слоя из нитей с образованием металломатричного композита. Упомянутый элемент вращают относительно его продольной оси, а керамическую нить наматывают в виде полосы при расстоянии между нитями в ней, равном 1-3 диаметра керамической нити с поверхностной плотностью 40-180 г/м2. Порошковый сплав предварительно расплавляют и непрерывно подают не ранее места касания полосы и элемента ротора или сформированного на роторе слоя металломатричного композита с расходом, обеспечивающим сплавление керамической нити и образование слоя металломатричного композита на участке нормированной длины, длина которой определяется из соотношения L=(0,52-1,05)*r, где L – длина участка вновь образованного поверхностного слоя, r – радиус элемента в виде тела вращения. Образованный металломатричный композит на указанном участке нормированной длины механически обрабатывают, причем ширина обрабатывающего инструмента равна или больше ширины полосы керамических нитей. В частных осуществлениях изобретения упрочняют элементы ротора в виде дисков или барабанов. По наружной поверхности элемента ротора через равные промежутки расположены средства для крепления хвостовиков лопаток, выполненные в виде корневых элементов под сварку по форме профиля лопатки. В качестве порошкового сплава используют порошковые сплавы на основе титана, никеля, алюминия. В качестве керамических нитей используют карбид-кремниевые волокна. Обеспечивается повышение технологичности процесса формирования покрытия, снижение массы конструкции, обеспечение ремонтопригодности ротора лопаточной машины, повышение механических свойств покрытия за счет гарантированного создания предварительного напряжения в нитях и повышения в 3-4 раза количества армирующих нитей на 1 мм толщины покрытия и повышение качества покрытия. 4 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к нефтяной и газовой промышленности, в частности к способам проведения геофизических исследований скважин, и предназначено для определения интервала перетока газа в заколонном пространстве скважины на газовых и газоконденсатных месторождениях. Техническим результатом изобретения является повышение точности определения места образования перетоков газа и газо-жидкостных смесей в заколонном пространстве скважины из продуктивного пласта. Способ исследования газовой и газоконденсатной скважины включает измерение температуры по стволу скважины и построение термограммы до заливки цемента, измерение температуры по стволу скважины и построение термограммы после заливки цемента, при этом дополнительно осуществляют измерение температуры и построение термограммы после твердения цемента через 50-72 часа, после чего осуществляют выявление температурных аномалий в интервале глубин от продуктивного пласта до устья скважины путем анализа полученных термограмм. 2 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для ремонтно-изоляционных работ в скважинах для ликвидации межпластовых перетоков флюидов, ограничения водопритоков и повышения эффективности работы скважин. Технический результат - повышение герметизирующих свойств состава для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах, сокращение времени образования тампонирующего вещества при заполнении каналов перетока в скважине. По способу приготавливают рабочий раствор для закачивания его в изолируемый интервал с концентрацией (15,67-25,03)% плотностью (1031-1054) кг/м3. Для этого смешивают технический оксид кальция и техническую воду. Получают известковое молоко. Количество известкового молока зависит от приемистости изолируемого интервала. В качестве изолируемого интервала используют заколонное пространство скважины. После закачивания осуществляют барботирование рабочего раствора углекислым газом до образования на наружной поверхности колонны карбонатной корки и проявления эффекта твердения за счет взаимного сцепления и срастания образующихся субмикрокристаллических частичек гидроксида кальция. Необходимое количество углекислого газа определяют стехиометрически по химическому уравнению. 1 з.п. ф-лы.
Изобретение относится к нефтяной и газовой промышленности и может быть использовано для ликвидации межпластовых перетоков флюидов, ограничения водопритоков и поглощений как при строительстве, так и эксплуатации скважин. Состав содержит 20-25 мас.% бентонитовой глины, 55-60 мас.% углеводородной фракции, 5-10 мас.% соды кальцинированной и 5-15 мас.% портландцемента. Техническим результатом является повышение эффективности ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах и увеличение продолжительности их межремонтного периода. 2 пр.

 


Наверх