Патенты автора Нестеренко Антон Владимирович (RU)

Изобретение относится к области термодеформационной обработки композиционных материалов на основе алюминия для получения заготовок и полуфабрикатов и может быть использовано в высокотехнологичных областях техники для изготовления деталей с повышенными эксплуатационными свойствами. Способ обработки алюмоматричного композита включает обработку путем интенсивной пластической деформации всесторонней ковкой в три этапа с последовательной сменой направления деформирования по трем осям координат заготовки со ступенчатым изменением температуры деформирования и последующим охлаждением заготовки до комнатной температуры, в котором каждый из трех этапов осуществляют путем нагрева заготовки от комнатной температуры до температуры 0,7Тликвидуса матрицы с произвольной скоростью, приложением к заготовке давления, равного 1-3% предела прочности матричного материала, затем нагрев от 0,7Тликвидуса матрицы до температуры 0,88Тликвидуса матрицы с увеличением скорости нагрева от 3°С/мин до 6°С/мин, далее выдержкой при температуре 0,88Тликвидуса матрицы в течение 1 мин с последующим охлаждением до комнатной температуры с произвольной скоростью, при этом деформацию осуществляют до достижения степени деформации ε не менее 54% на каждом этапе. Изобретение направлено на улучшение механических свойств алюмоматричного материала, в частности на увеличение сопротивления на сжатие. 1 пр., 1 ил.

Изобретение относится к области металлургии, в частности к обработке и изготовлению изделий из композиционных материалов на основе алюминиевых сплавов, армированных карбидом кремния. Способ изготовления изделий из алюмоматричного композита, армированного карбидом кремния, путем формообразования под давлением и нагрева с переменной скоростью включает приложение к заготовке из обрабатываемого композита начального давления, равного 1-3% предела прочности материала матрицы, осуществление нагрева в три стадии: I стадия - от комнатной температуры до температуры 0,1Тликвидуса матрицы с увеличением скорости нагрева от 2°С/мин до 8°С/мин; II стадия - от температуры, равной 0,1Тликвидуса матрицы, до температуры, равной 0,2Тликвидуса матрицы, с увеличением скорости нагрева от 8°С/мин до 11°С/мин; III стадия - от температуры, равной 0,2Тликвидуса матрицы, до температуры, равной 0,88Тликвидуса матрицы, с уменьшением скорости нагрева от 11°С/мин до 3°С/мин, выдержку при температуре, равной 0,88Тликвидуса матрицы, в течение 1 мин и последующее охлаждение до комнатной температуры с произвольной скоростью. Способ позволяет совмещать формоизменение с деформационно-термической обработкой, обеспечивающей деформируемость алюмоматричного композита до уровня, необходимого для получения изделий сложной формы без образования дефектов за один технологический переход. 1 пр., 1 ил.

Изобретение касается обработки материалов высоким давлением, в частности, устройства для испытания образцов на растяжение, кручение, сжатие под высоким давлением и при высоких температурах. Установка содержит контейнер с расположенной в нем рабочей камерой, заполненной рабочей средой, с захватами для образца, механизм нагружения, нагреватель, выполненный в форме спирали и расположенный в рабочей камере таким образом, что образец находится внутри спирали, средства подачи рабочей среды и контрольно-измерительную аппаратуру. В качестве рабочей среды используют жидкую среду. Механизм нагружения выполнен в форме верхнего и нижнего плунжеров. Нагреватель, выполненный в форме спирали с теплоизоляционным покрытием, помещен в керамическую трубку, при этом один из концов спирали соединен с корпусом верхнего захвата, другой размещен в электроизолированном отверстии нижнего захвата и предназначен для периодического взаимодействия с контактами, установленными в нижнем плунжере. Средства контрольно-измерительной аппаратуры выполнены в виде термопары, спай которой размещен в полости керамической трубки, а вывод через электроизолированное отверстие верхнего захвата соединен с электрическими контактами верхнего плунжера. Контакты верхнего и нижнего плунжера выполнены конической формы. Технический результат: обеспечение надежности и расширение технологических возможностей за счет отсутствия ограничений по достижении высоких температур и давлений. 1 ил.
Изобретение относится к изготовлению композитных заготовок на основе титана. Способ включает приготовление шихты, содержащей отходы титановых сплавов, и компактирование шихты в заготовки путем прессования. Шихту готовят путем добавления порошка титана в очищенные в щелочном растворе отходы титановых сплавов при массовом соотношении отходов и порошка титана, равном 70/30, полученную шихту подвергают травлению в кислом растворе с обеспечением деоксидации и наводораживания до 0,1-1 мас. % водорода в титане, затем шихту измельчают, совмещая со смешиванием, и нагревают до температуры прессования, после прессования проводят удаление загрязнений с поверхности полученной заготовки, покрывают ее смазкой, подвергают прокатке и проводят термическое обезводораживание. Обеспечивается повышение механических свойств заготовок, а также прочности и пластичности. 2 з.п. ф-лы, 1 пр.
Изобретение относится к цветной металлургии, в частности к изготовлению заготовок из титановой губки. Способ изготовления заготовок из титана включает размещение частиц титановой губки в камере пресса, компактирование частиц губки до получения заготовки, ее прессование, удаление загрязнений с поверхности прессованной заготовки, покрытие ее смазкой и последующую прокатку. Перед размещением частиц титановой губки в камере пресса их нагревают в вакуумной нагревательной печи до температуры 700-800°C, легируют водородом до концентрации 0,1-0,9 мас.%, после чего снижают температуру в печи до температуры не ниже 300°C, компактирование ведут при температуре 300-700°С, прессование компактных заготовок осуществляют полунепрерывным методом через матрицу при температуре не выше 700°C с коэффициентом вытяжки не более двух, а затем при температуре не выше 700°C и коэффициенте вытяжки не менее трех, при этом прокатку заготовок проводят при температуре не выше 700°С, после которой осуществляют отжиг в вакууме при температуре не ниже 700°C. Обеспечивается возможность обрабатывать труднодеформируемый титан при более низких температурах, повышаются механические свойства получаемых заготовок. 1 пр.

 


Наверх