Патенты автора Тамбасов Игорь Анатольевич (RU)

Изобретение относится к способу нанесения нанопленочного покрытия на подложку и может быть использовано для получения нанопокрытий на поверхностях различных подложек при невысокой температуре. Осуществляют импульсно-плазменное напыление с лазерным поджигом. Используют импульсный режим работы эксимерного ультрафиолетового лазера и собственные ионы материала мишени для создания рабочей плазмы. Используют ультрафиолетовое излучение с прецизионно низкой мощностью для начального поджига при создании рабочей плазмы и используют импульсный режим работы источника питания магнетрона с временем работы меньше, чем частота следования лазерных импульсов. Техническим результатом изобретения является улучшение оптических и структурных свойств напыляемых покрытий за счет использования плазмы из собственных ионов распылительной мишени и использования прецизионно низкой мощности лазерного излучения. 1 ил.

Изобретение относится к способу создания прозрачных проводящих композитных нанопокрытий (варианты). По первому варианту предварительно осуществляют химическое осаждение на нагретую подложку тонкой пленки углеродных нанотрубок. Осуществляют реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси инертного и реактивного газов с осаждением на подложку покрытия из оксида индия. При реактивном магнетронном распылении используют мишень из чистого индия, а в качестве упомянутой газовой смеси используют газовую смесь с содержанием инертного газа и 30% кислорода. По второму варианту предварительно на подложку наносят наномикросетку методом растрескивающихся полимерных шаблонов с использованием жидкого кремнезоля и напылением металла с электронной проводимостью. Осуществляют реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси инертного и реактивного газов, с осаждением на подложку покрытия из оксида индия. При реактивном магнетронном распылении используют мишень из чистого индия и газовую смесь с содержанием в ней 21% кислорода. Техническим результатом является снижение поверхностного сопротивления прозрачных проводящих покрытий с электронной проводимостью, а также получение прозрачного проводящего покрытия с дырочной проводимостью. 2 н.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к способу получения тонких магнитных наногранулированных пленок. Способ включает последовательное осаждение на термостойкую подложку тонкой пленки оксида ферромагнитного металла и слоя металла-восстановителя при комнатной температуре с последующим вакуумным отжигом полученной двухслойной пленки. Слой оксида ферромагнитного металла наносят высокочастотным магнетронным распылением металлической кобальтовой мишени в атмосфере из смеси газов, состоящей из 70% аргона и 30% кислорода при комнатной температуре. На полученный слой в качестве металла-восстановителя осаждают слой алюминия методом низкочастотного магнетронного распыления в атмосфере чистого, не менее 99,99%, аргона, после чего осуществляют вакуумный отжиг полученной двухслойной пленки при температуре 700°С. Технический результат заключается в упрощении технологии получения пленок, отсутствует агломерация магнитных наногранул, обеспечении возможности синтеза пленок с магнитными наногранулами заданного размера от единиц до сотни нанометров с малой дисперсностью магнитных наногранул. 2 ил., 1 пр.

Изобретение относится к области теплометрии и может быть использовано для измерения поглощающей и излучающей способностей тонкопленочных образцов, например образцов теплозащитных экранов, используемых в космической промышленности. Устройство для измерения поглощающей и излучающей способностей тонкопленочного образца содержит криостат, плоские образец и поглотитель, установленные параллельно на небольшом расстоянии друг от друга, два датчика, измерители температуры и источник мощности, соединенный с нагревателем поглотителя или образца при измерении поглощающей или излучающей способности. Поглотитель и образец содержат тонкопленочные термометр сопротивления и нагреватель, изолированные друг от друга диэлектрическим слоем и распределенные по площади поглотителя и образца. Суммарная теплоемкость термометра сопротивления и нагревателя меньше теплоемкости образца и поглотителя. Поглотитель имеет теплоемкость, равную или меньшую теплоемкости образца, а источник мощности является генератором переменного сигнала. Технический результат - повышение точности и чувствительности устройства при измерении поглощающей и излучающей способностей тонкопленочного образца. 2 ил.

Изобретение относится к телеметрии и сжатию данных при трансляции данных измерений в системах контроля и мониторинга, при проведении измерений в труднодоступных местах, а также при хранении измерительных данных, например, в черных ящиках самолетов и судов. Техническим результатом является ограничение количества данных при проведении измерений, а также повышение скорости кодирования данных с обеспечением безопасности данных. В способе создают контекст для сжатия измерительных данных, при котором энтропия измерительных данных, характерных для конкретных устройств, обеспечивающих измерения, и условий проведения измерений, настраивается, в том числе посредством модуляции измерительных параметров, для реальной и/или требуемой точности измерений, а коэффициент сжатия и состав передаваемых/сохраняемых данных настраиваются посредством системы исходных данных, представляющей собой один или несколько связанных массивов данных о параметрах измерений и один или несколько массивов данных о составе измерений. 2 н. и 5 з.п. ф-лы, 5 ил.

 


Наверх