Патенты автора Ряховских Илья Викторович (RU)

Изобретение относится к области машиностроения, а более конкретно к защите металла от коррозии. Способ оценки защитной эффективности композиций, ингибирующих коррозионное растрескивание под напряжением (КРН) трубных сталей и используемых в составе защитных покрытий трубопроводов, предназначенных для транспортировки природного газа, в котором выбирают фрагмент стальной трубы, вырезают образцы цилиндрической формы и модельные образцы прямоугольной формы с пропилом на поверхности. Оценивают эффективность защитных свойств композиции. Осуществляют растяжение образцов. Испытывают на КРН на воздухе. Определяют длину трещины на момент завершения испытаний и определяют значение скорости роста трещины. Если по результатам всех упомянутых испытаний, композицию, ингибирующую КРН трубных сталей, признают эффективной, то ее используют в составе наружных защитных покрытий трубопроводов, предназначенных для транспортировки природного газа. Достигается расширение функциональных возможностей.

Использование: для обнаружения и оценки максимальной глубины трещин. Сущность изобретения заключается в том, что при осуществлении оценки глубины трещин на поверхности труб на первом этапе проводят оценку глубины трещин с использованием вихретокового дефектоскопа, оснащенного накладным вихретоковым преобразователем (ВТП) с эффективным диаметром более 10 мм, сначала устанавливают динамический режим работы вихретокового дефектоскопа и проводят операции по обнаружению на поверхности труб дефектных участков, в обнаруженном дефектном участке выделяют зоны с максимальными показаниями вихретокового дефектоскопа, затем переводят вихретоковый дефектоскоп в статический режим и проводят измерения глубин трещин в упомянутых зонах, после чего осуществляют предварительное ранжирование. Для уточнения глубины трещин проводят магнитопорошковую дефектоскопию дефектного участка. После чего проводят второй этап оценки, на котором осуществляют измерения глубины трещин вихретоковым дефектоскопом, оснащенным накладным ВТП с эффективным диаметром менее 3 мм и работающим в статическом режиме, а затем осуществляют дополнительное ранжирование трещин. Дальнейшую оценку глубины трещин проводят с помощью электропотенциального трещиномера, по измерениям которого осуществляют контрольное ранжирование. Затем оценку глубины трещин осуществляют методом контролируемой шлифовки. Если на втором этапе оценки были выявлены трещины, требующие дальнейшей оценки и при их плотности расположения более 4 единиц трещин на 1 см2, оценку осуществляют методом контролируемой шлифовки, исключая измерения электропотенциальным трещиномером. Технический результат: повышение производительности и достоверности оценки глубины трещин на поверхности труб. 1 ил., 9 табл.

Изобретение относится к составам битумно-полимерных грунтовок для защиты от коррозии стальных трубопроводов, металлических резервуаров и нефтехранилищ промышленно-гражданского строительства. Битумно-полимерная грунтовка содержит мастику битумно-полимерную, фенолформальдегидную смолу, бутилкаучук и СКЭПТ-40, смолу термореактивную ЭД-20, органический растворитель. Грунтовка дополнительно содержит соль высших алифатических кислот с щелочноземельным металлом Са, или Mg, или Ва, октадециламин и кремнийорганическое соединение на основе замещенного триалкоксисилана при общем количестве их в составе 2-5 мас.% и при следующем содержании компонентов в грунтовке, мас%: мастика битумно-полимерная 20-30, фенолформальдегидная смола 2-4, бутилкаучук и СКЭПТ-40 2-4, смола термореактивная ЭД-20 3-5, соль высших алифатических кислот с щелочноземельным металлом Са, или Mg, или Ва 0,1-2,25, октадециламин 0,1-2,25, кремнийорганическое соединение 0,5-3,75, органический растворитель остальное. Технический результат – обеспечение грунтовки битумно-полимерной с высокими технологическими показателями по адгезионной прочности к металлу, водостойкости, стойкость к катодному отслаиванию, и эффективным ингибированием процесс КРН трубной стали, что повышает эксплуатационную надежности грунтовочного покрытия. 2 з.п. ф-лы, 2 табл., 5 пр.

Группа изобретений относится к трубопроводному транспорту, используемому в нефтегазовой промышленности, и может быть применена при обследовании и ремонте протяженных участков труб подземных трубопроводов со сроками эксплуатации более 25 лет, на которых обнаружены трещины, образованные в результате коррозионного растрескивания под напряжением (стресс-коррозии). Технический результат предлагаемых способов отбраковки труб направлен на расширение функциональных возможностей, заключающихся в отбраковке труб, подверженных КРН. Технический результат способа проведения ремонта труб заключается в повышении надежности и устойчивости против КРН отремонтированных участков подземных трубопроводов, а также повышении технологичности процедуры отбраковки и ремонта трубопроводов. Согласно предлагаемому решению выявляют трещины, глубина которых превышает 0,1t, где t - толщина стенки трубы. Области труб с выявленными после неразрушающего контроля трещинами, предварительно очищают от изоляции, а трещины идентифицируют на соответствие признакам КРН и подвергают дополнительному контролю, определяя их глубину. При глубине трещин КРН, не превышающей 0,1t, повреждения трубы признают незначительными, а трубу с незначительными повреждениями - подлежащей ремонту, путем финишной очистки поверхности и последующей переизоляцией в трассовых условиях с применением битумно-полимерных материалов, содержащих ингибирующую КРН композицию. 3 н.п. ф-лы, 1 ил., 1 табл.
Изобретение относится к коррозионным испытаниям, а именно к способам испытания высокопрочных сталей на склонность к коррозионному растрескиванию. Способ испытания трубных сталей на коррозионное растрескивание под напряжением (КРН) заключается в том, что сперва вырезают модельный образец прямоугольной формы, его очищают от загрязнения, обезжиривают и высушивают. Затем на рабочей части модельного образца закрепляют герметичную ячейку с коррозионным раствором и между металлической поверхностью рабочей части упомянутого образца и внутренней поверхностью ячейки с коррозионным раствором помещают пластину из пористого неметаллического материала. Далее перед началом испытания выполняют тарировку модельных образцов путем определения соответствия между величиной прикладываемого усилия или перемещения захвата и величиной возникающих на внешней поверхности образцов напряжений. Затем нагружают модельный образец, задавая начальную нагрузку на него σ0=σт, где σт - предел текучести трубной стали. Далее выбирают режим циклического нагружения и проводят ступенчатое статическое нагружение модельного образца, увеличивая напряжения в нем с шагом 30 МПа, не изменяя при этом коэффициент асимметрии по напряжению и частоту циклов. Затем испытания проводят до зарождения трещин и по результатам проведенных экспериментов строят график зависимости величины перемещения захвата (S) испытуемого модельного образца трубной стали от числа циклов (N) нагружения, на котором по изменению наклона (появлению перегиба на прямой S-N) фиксируют момент зарождения трещин. После завершения испытаний освобождают модельный образец от ячейки с коррозионной средой и исследуют поверхность рабочей части образца с применением оптических средств измерения, а сопротивление сталей КРН оценивают по результатам испытания не менее чем на двух образцах. Техническим результатом является расширение функциональных возможностей. 6 ил., 1 табл.

Изобретение относится к области контроля качества стальных изделий, предназначенных для эксплуатации в агрессивных средах, оказывающих коррозионное воздействие на металлы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию испытательной среды. Причем образцы подвергают предварительной деформации растяжением со степенями 1-10%. Затем прикладывают нагрузку, величина которой составляет 50-80% от предела текучести, и помещают образцы в испытательную среду со значением pH в пределах 2,5-5 на 180-360 часов. Далее образцы разрушают на воздухе методом растяжения на разрывной машине, а о стойкости к коррозионному растрескиванию под напряжением судят по разнице механических свойств сталей в исходном состоянии и после испытаний. При этом о стойкости к коррозионному растрескиванию под напряжением судят по степени изменения пластичности, которую вычисляют по формуле: ξ = δ 5 0 − δ 5 H δ 5 0 ⋅ 100 % , где - δ 5 0 - относительное удлинение в исходном состоянии; δ 5 H - относительное удлинение после испытаний, при этом стали, для которых значение ξ составляет от 0 до +10%, относят к 1-му классу стойкости, стали, для которых значение ξ составляет более +10% или от минус 10% до 0%, относят ко 2-му классу стойкости, стали, для которых значение ξ составляет менее минус 10%, относят к 3-му классу стойкости. Техническим результатом является повышение информативности и достоверности при снижении длительности проведения контроля на стойкость против коррозионного растрескивания с учетом склонности стали к неоднородности пластической деформации, а также возможность ранжирования сталей по классам стойкости против коррозионного растрескивания под напряжением. 1 з.п. ф-лы, 2 табл.

 


Наверх