Патенты автора Красновский Константин Олегович (RU)

Изобретение относится к криогенной технике и может быть использовано в воздухоразделительных установках. Способ работы теплового насоса включает сжатие в компрессоре нагретой при охлаждении воздуха воды и нагрев до требуемого значения температуры газа, идущего на регенерацию адсорбента в блоке комплексной очистки воздуха. Нагрев регенерирующего газа до требуемых значений температуры осуществляется в предконденсаторе за счет охлаждения хладагента-аммиака от температуры сжатия на выходе из аммиачного компрессора до температуры конденсации. Конденсация хладагента осуществляется за счет нагрева одной части потока оборотной воды, охлаждающей воздух после воздушного компрессора, в результате чего оборотная вода нагревается от 313 до 371 K, после смешения основной части потока оборотной воды с температурой 313 K, отбираемой после охлаждения воздушного компрессора, с потоком оборотной воды, нагретой до 371 K. Техническим результатом является повышение эффективности использования низкопотенциальной теплоты оборотной воды и уменьшение работы сжатия аммиачного компрессора.

Группа изобретений относится к области некриогенного разделения газовых смесей. Состав содержит полимерный материал - растворимый полиарилсульфон, растворители - н-метилпирролидон, диметилформамид, тетрагидрофуранин и нерастворитель - глицерин. Способ включает изготовление прядильного раствора, раствора внутреннего осадителя из воды и н-метилпирролидона, сушку половолоконной мембраны, формование половолоконной мембраны, которая производится в осадительную ванну через воздушный зазор. Достигается повышение селективности и механической прочности половолоконной газоразделительной мембраны. 2 н.п. ф-лы, 1 табл.

Изобретение относится к области некриогенного разделения газовых смесей. Половолоконная композитная газоразделительная мембрана включает полимерный суппорт и как минимум два слоя, при этом суппорт выполнен из полиарилсульфона или полиарилсульфона, поливиниламина и/или поливинилпирролидона, первый слой выполнен из поливинилтриметилсилана и/или полидиметилсилоксана, а второй слой выполнен из поливиниламина и/или поливинилпирролидона. Изобретение также относится к способу получения половолоконной композитной газоразделительной мембраны, включающему изготовление прядильного раствора, изготовление раствора внутреннего осадителя, формование суппорта половолоконной мембраны, сушку суппорта половолоконной мембраны, изготовление покрывного раствора, нанесение покрывного раствора на суппорт, при этом прядильный раствор изготавливают из полиарилсульфона или полиарилсульфона, поливиниламина или полиарилсульфона, поливинилпирролидона или полиарилсульфона, поливиниламина, поливинилпирролидона, формование суппорта половолоконной мембраны производится в осадительную ванну через воздушный зазор, суппорт половолоконной мембраны покрывают покрывными растворами, один покрывной раствор изготавливают из поливинилтриметилсилана и/или полидиметилсилоксана, другой покрывной раствор изготавливают из поливиниламина и/или поливинилпирролидона. Технический результат - повышение селективности и проницаемости половолоконной композитной газоразделительной мембраны. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к области холодильной и криогенной техники. Поток хладагента, состоящий из нескольких компонентов с различной температурой кипения, сжимается в первой ступени сжатия, охлаждается в промежуточном охладителе, после промежуточного охладителя первой ступени сжатия и смешения поток с промежуточным давлением разделяется в первом сепараторе на жидкую и газовую фракции. Газовая фракция сжимается во второй ступени сжатия компрессора и направляется во второй сепаратор, из которого жидкая фракция с высоким давлением расширяется до промежуточного давления, нагревается в четвертом теплообменнике и возвращается на вторую ступень сжатия перед первым сепаратором. Жидкая фракция из первого сепаратора предварительно охлаждается в четвертом теплообменнике за счет холода расширенной жидкой фракции из второго сепаратора, далее она охлаждается в первом теплообменнике вместе с природным газом, расширяется до низкого давления и смешивается с обратным потоком. Жидкая фракция из третьего сепаратора охлаждается во втором теплообменнике вместе с природным газом, расширяется до низкого давления и смешивается с обратным потоком из третьего теплообменника, который после испарения во втором и первом теплообменниках направляется на первую ступень сжатия компрессора. Газовая фракция из третьего сепаратора последовательно сжижается вместе с природным газом во втором и третьем теплообменниках, расширяется и направляется в обратный поток. Техническим результатом является повышение энергоэффективности процесса ожижения природного газа. 1 ил.

Изобретение относится к области некриогенного разделения газовых смесей. Способ включает формование полимерной половолоконной мембраны с последующей термовакуумной обработкой. Половолоконную мембрану формуют из термически сшиваемого полиимида, или полисульфона, или поликарбоната, в котором соотношение сшиваемых и несшиваемых фрагментов полимерной цепи находится в интервале от 1:8 до 8:1. В дальнейшем осуществляют постадийную сушку, включая в структуру полимерной половолоконной мембраны катализатор. Производят термовакуумную обработку при температуре 60-220°С в течение 1-24 часов с использованием катализатора. Катализатор – толуолсульфокислота, или тетраизопропоксид титана, или бис(триэтаноламин)диизопропоксид титана, или метансульфокислота, включен в структуру полимерной половолоконной мембраны в режиме ее постадийной сушки. Технический результат - повышение давления пластификации мембраны, что обеспечивает возможность ее использования в агрессивных газовых средах. 2 ил.

Изобретение относится к области изготовления мембран для разделения газовых смесей. Предложена композиция для формования половолоконной мембраны путем коэкструзии прядильного раствора и раствора внутреннего осадителя. Прядильный раствор содержит полисульфон, два растворителя полисульфона и нерастворитель полисульфона, при этом второй растворитель характеризуется большей летучестью, чем первый растворитель. В качестве первого растворителя прядильный раствор содержит N-метилпирролидон или N,N-диметилформамид, в качестве второго растворителя прядильный раствор содержит тетрагидрофуран или дихлорметан. В качестве нерастворителя полисульфона прядильный раствор содержит этиловый спирт или триэтиленгликоль. Раствор внутреннего осадителя содержит N-метилпирролидон или N,N-диметилформамид в количестве 40-97 мас.% и воду. Изобретение обеспечивает повышение селективности полученной половолоконной мембраны. 3 ил., 1 табл.

Изобретение относится к криогенной технике. Теплоизоляционная система содержит изоляцию и внешний кожух. Также система содержит находящийся в тепловом контакте с криогенным оборудованием теплообменник-вымораживатель. Выход теплообменника-вымораживателя направлен вовнутрь теплоизоляции, а на вход теплообменника-вымораживателя поступает воздух из окружающей среды. Влага в теплообменнике-вымораживателе из воздуха в процессе работы конденсируется и вымораживается и затем удаляется назад в окружающую среду в процессе работы оборудования или при его отогреве. Достигается сохранение постоянного значения теплоизоляционной эффективности криогенного оборудования в течение длительного времени и, как следствие, увеличение срока службы криогенного оборудования. 6 з.п. ф-лы, 3 ил.

Изобретение относится к криогенной технике. Криогенный трубопровод содержит трубопровод, охваченный слоями, по меньшей мере, два из которых теплоизоляционные. Часть слоев выполнена попарно. Внутренний слой каждой пары выполнен из волокнистого теплоизоляционного материала, внешний слой - из ячеистого теплоизоляционного материала, а число таких пар в трубопроводе не менее двух. Достигается сохранение постоянного значения теплоизоляционной эффективности криогенного трубопровода в течение длительного времени, увеличение срока службы криогенного трубопровода. 3 з.п. ф-лы, 3 ил.

 


Наверх