Патенты автора Гончаров Алексей Леонидович (RU)

Изобретение относится к способу электронно-лучевой сварки. Способ включает перемещение электронного луча со скоростью сварки Vсв и осцилляцию электронного луча в виде пилообразных колебаний вдоль стыка свариваемых деталей с формированием сварочной ванны и парогазового канала заданной глубины. В начале каждого периода осцилляции электронный луч направляют ортогонально плоскости свариваемых деталей. В течение периода осцилляции электронный луч перемещают в направлении, противоположном направлению сварки, с постоянной скоростью V > 2 Vсв. По достижении величины перемещения, равной амплитуде осцилляции А=0,5-2 диаметра парогазового канала, электронный луч импульсно перебрасывают в направлении сварки до восстановления ортогональной ориентации электронного луча относительно поверхности свариваемых деталей. В результате достигается снижение экономических издержек, расширение технологических возможностей и повышение качества сварных соединений при электронно-лучевой сварке деталей больших толщин. 5 ил.

Изобретение относится к способу электронно-лучевого аддитивного получения заготовок. Заготовки получают путем аддитивного электронно-лучевого формообразования из титановой и никелевой проволоки. Устройство, реализующее способ, содержит электронно-лучевую пушку 1, основной электронный луч 2 и дополнительные электронные лучи 3, формируемые электронной пушкой 1, подложку 4, проволоку из Ti 5 и проволоку из Ni 6, подаваемые через мундштуки 7, основную ванну расплава 8, дополнительные ванны расплава 9, наплавленный валик из нитинола 10. Способ включает расплавление основным электронным лучом (2) подаваемого материала (5) из титана в виде проволоки с образованием основной ванны (8) расплава. Непрерывно перемещают ванны (8, 9) по заданной траектории и формируют наплавленный валика. Осуществляют подогрев одним дополнительным электронным лучом (3) участка наплавленного валика. Дополнительно подают второй сырьевой материал (6) из никеля в виде проволоки. Скорость подачи присадочных проволок выбирают из соотношения где dNi, dTi - диаметры проволок из никеля и титана соответственно, - соотношение массовых долей металлов в наплавляемом сплаве. Температуру подогрева участков закристаллизовавшегося валика с температурой 0,8…0,9 температуры плавления нитинола выбирают выше температуры плавления титана и формируют дополнительную ванну расплава. Технический результат состоит в повышении качества заготовок из нитинола за счет повышения однородности химического состава наплавляемого материала и стабильности свойств получаемых заготовок. 2 ил.

Изобретение относится к способу многослойной лучевой сварки. Осуществляют создание непосредственно в узком зазоре между свариваемыми деталями над сварочной ванной переменного отклоняющего магнитного поля электромагнитной системой, с катушкой индуктивности и разомкнутым магнитопроводом, имеющим магнитные наконечники со сквозными каналами. Магнитные наконечники располагают над сварочной ванной, изменяют электрический ток в катушках индуктивности и время действия электронного луча на боковые стенки узкого зазора и на присадочный материал для регулирования величины и постоянства оплавления боковых стенок узкого зазора и присадочного материала. Осуществляют направление электронного луча на свариваемые детали и на присадочный материал внутри ферромагнитного лучепровода, экранирующего переменное магнитное поле. Подачу присадочного материала в сварочную ванну осуществляют сквозь каналы магнитных наконечников. Технический результат заключается в уменьшении зоны термического влияния, повышении надежности сварного шва и получении высокой стабильности и энергетической эффективности сварочного процесса. 3 ил.

Изобретение относится к области вакуумной электроники, а именно к оборудованию для электронно-лучевой обработки материалов. Технический результат - расширение технологических возможностей, упрощение работы по сборке и замене катодного узла электронной пушки и сокращение времени восстановления работоспособности пушки в случае выхода из строя катода или подогревателя. Катодный блок содержит корпус 1 с установленным в него высоковольтным изолятором 2, в центральном отверстии которого расположена металлическая втулка 3, внутри втулки 3 размещен многоконтактный электрический вакуумный разъем 4, по внутренней цилиндрической поверхности металлической втулки 3 со стороны вакуума установлен съемный картридж 5, управляющий электрод (электрод Венельта) 6 расположен по внешней цилиндрической поверхности втулки 3 со стороны вакуума, накидная гайка 7 обеспечивает фиксацию картриджа 5 и управляющего электрода (электрода Венельта) 6. Разъем 4 содержит вакуумный электрический изолятор 8, в отверстия которого впаяны стержневые контакты 9. Картридж 5 включает в себя электрический разъем 10, ответные электрические контакты 11, держатель катода 12, дисковый катод 13 и подогреватель 14. Многоконтактный вакуумный электрический разъем 4 закреплен внутри металлической втулки 3 вакуумной пайкой. Металлическая втулка 3 закреплена в отверстие высоковольтного изолятора 2 вакуумной пайкой. Внутренняя цилиндрическая поверхность металлической втулки 3 со стороны вакуума является направляющей для легкосъемной ответной части электрического разъема 4 с установленным на нем катодным узлом. После откачки вакуумного объема сварочной электронного блока до высокого вакуума подается ток накала в подогреватель 14 и напряжение бомбардировки между подогревателем 14 и дисковым катодом 13. 2 ил.

Изобретение относится к области электротехники, в частности к конструкции ротора с постоянными магнитами для высокоскоростной электрической машины. Технический результат – повышение надежности. Комбинированный ротор содержит постоянные магниты, установленные на валу из магнитомягкого материала с образованием полюсов. На собранные магниты надевается сварной бандаж, который состоит из полюсных наконечников из магнитной стали и немагнитных вставок, сваренных в местах стыка. Постоянные магниты выполнены в виде сегментов и установлены вплотную друг к другу без образования немагнитных промежутков. Сегменты магнитов, формирующие полюса, намагничены радиально. Сегменты магнитов, установленные между полюсами, выполнены с тангенциальной намагниченностью. При этом сегменты постоянных магнитов, намагниченные в радиальном направлении, расположены напротив полюсных наконечников, а сегменты магнитов с тангенциальной намагниченностью расположены напротив немагнитных вставок. 3 ил.

Изобретение относится к способу электронно-лучевой сварки ферро- и парамагнитного материалов. Способ включает формирование аустенитной структуры шва путем смещения электронного пучка относительно стыка свариваемых деталей при обеспечении заданной степени проплавления кромок. Смещение электронного пучка проводят периодически попеременно поперек стыка с амплитудами А2 и А1. Величину смещения оси пучка на парамагнитный материал А1 выбирают до r, где r - половина ширины шва при сварке статичным пучком. Значение смещения на ферромагнитный материал А2 определяют по расчетной формуле в зависимости от степени проплавления кромок парамагнитного материала, эквивалентного содержания хрома в парамагнитном и ферромагнитном материалах, эквивалентного содержания никеля варамагнитном и ферромагнитном материалах соответственно. Длительность пребывания пучка на парамагнитном и ферромагнитном материалах определяют по расчетной формуле в зависимости от периода попеременного смещения пучка, который существенно меньше времени перехода к стационарному процессу теплопроводности в сварочной ванне, частоты попеременного смещения пучка и удельной теплоемкости и теплопроводности парамагнитного и ферромагнитного материалов соответственно. В результате обеспечивают повышение точности регулирования степени проплавления сварных кромок. 2 ил.

Изобретение относится к электронно-оптическим устройствам. Технический результат - расширение области применения фокусируще-отклоняющей системы для реализации различных технологических процессов обработки материалов электронным пучком. Система содержит магнитную фокусирующую линзу [1], состоящую из обмотки возбуждения [2], магнитопровода [3], колец [4] из магнитного аморфного сплава из тонкой ленты с индукцией насыщения не хуже индукции насыщения материала магнитопровода [3] и немагнитных промежутков [5], двухполюсную отклоняющую систему тороидального типа [6], электронно-оптическую ось пушки [7], лучепровод [8], плоскость [9] кроссовера электронного пучка, плоскость [10] фокусировки электронного пучка. Электронный пучок, сформированный электронной пушкой и системой формирования, поступает по лучепроводу [8] в фокусирующе-отклоняющую систему вдоль электронно-оптической оси [7]. При подаче тока на обмотку возбуждения [2] магнитная фокусирующая линза [1] переносит кроссовер электронного пучка в плоскости [9], расположенного в районе ускоряющего промежутка, в плоскость фокусировки [10] на обрабатываемом объекте. Отклоняющая система [6] тороидального типа при подаче тока в ее обмотки отклоняет электронный пучок в пределах поля обработки в соответствии с заданной программой, при этом центр отклонения расположен в центре магнитной линзы. Кольца [4] из магнитомягкого материала экранируют магнитное поле внешних по отношению к оси витков обмоток отклоняющей системы [6] и увеличивают величину индукции отклоняющего поля на оси системы, создаваемого внутренними витками обмотки. При этом чередующиеся кольца [4] из магнитомягкого материала и промежутки [5] создают концентрацию магнитного поля фокусирующей системы на электронно-оптической оси пушки [7]. 5 ил., 2 табл.

Способ электронно-лучевой сварки разнородных металлов или сплавов предназначен для изготовления сварных конструкций больших толщин. Способ включает направление электронного пучка на свариваемый стык с лицевой его стороны. В процессе сварки электронный пучок отклоняют в сторону материала с отрицательным термоэлектрическим потенциалом под острым углом φ(0) к стыку. Обеспечивают отклонение от стыка оси пучка с обратной стороны свариваемой детали под воздействием магнитных полей термоэлектрических токов под углом, равным упомянутому углу φ(0). Величину угла φ(0) определяют в зависимости от заряда и массы электрона, ускоряющего напряжения, магнитной индукции на поверхности стыка, толщины свариваемой детали и коэффициента, учитывающего для каждой пары разнородных материалов параметры стыка и температуру нагрева. Изобретение позволяет повысить качество сварных соединений из разнородных металлов и сплавов большой толщины с отсутствием непроваров по толщине стыка. 2 ил.

 


Наверх