Патенты автора Бакланова Инна Викторовна (RU)

Изобретение относится к технологии функциональных материалов, конкретно к технологии оптически прозрачных оксидных полупроводников, применяемых в оптоэлектронике, фотовольтаике и плазмонике. Согласно изобретению предложен способ получения нанодисперсного оксида кадмия, допированного литием, включающий получение исходной смеси путем растворения карбоната кадмия и карбоната лития, взятых в стехиометрическом соотношении, в 10%-ной муравьиной кислоте, взятой в количестве 5,6 мл раствора кислоты на 1 г суммарного количества карбоната кадмия и карбоната лития, упаривание полученной смеси при температуре 50-60 °С до получения сухого остатка и отжиг при температуре 300-320 °С в течение 0,5 часа на первой стадии и при фиксированном значении температуры, находящейся в интервале 500-900 °С, в течение 1 часа на второй стадии. Полученный согласно изобретению нанодисперсный оксид кадмия, допированный литием, оптически прозрачный в видимом диапазоне спектра, характеризуется увеличением ширины интервала значений запрещенной зоны с выраженным линейным характером зависимости ширины запрещенной зоны от концентрации лития и температуры отжига. 2 ил., 1 табл.

Изобретение относится к технологии получения оксида вольфрама, допированного кобальтом, который может быть использован в качестве фотокатализатора, активного в видимом диапазоне света. Способ получения оксида вольфрама, допированного кобальтом, состава W1-xCoxO3 (0,01 ≤ x ≤ 0,09) включает получение реакционной смеси, содержащей водный раствор хлорида кобальта гексагидрата и вольфрамата гидрата, добавление раствора соляной кислоты, отделение осадка и сушку, при этом в качестве вольфрамата гидрата используют паравольфрамат аммония гидрата состава (NH4)10(H2W12O42)·4H2O, взятый по отношению к хлориду кобальта гексагидрату состава CoCl2·6H2O в молярном соотношении в пересчете на металл W : Co = (0,99-0,91) : (0,01-0,09), а реакционную смесь подвергают гидротермальной обработке при температуре 160–200ºС и избыточном давлении 360–617 кПа в течение 20-26 ч. Предлагаемый способ является простым и технологичным и обеспечивает получение допированного кобальтом оксида вольфрама со значительным уменьшением ширины запрещенной зоны, что приводит к повышению фотокаталитической активности материала при облучении видимым светом. 2 ил., 3 пр.

Изобретение относится к химической технологии, конкретно к технологии неорганических люминофоров, применяемых при изготовлении светодиодных систем, а также люминесцентных детекторов для радиационной дозиметрии и радиотерапии. Описан сложный оксид алюминия и редкоземельных элементов (РЗЭ) состава (Al1-x-yEuxTby)2O3, где 0,005≤х≤0,015 и 0,01≤у≤0,02, в качестве люминофора белого цвета свечения и способ получения сложного оксида алюминия редкоземельных элементов (РЗЭ). Технический результат - разработка люминофора белого цвета свечения на основе оксида алюминия с целью расширения номенклатуры люминофоров, обеспечивающих получение спектра, близкого к спектру солнечного излучения. 2 н.п. ф-лы, 1 ил., 1 табл., 3 пр.
Изобретение относится к люминофорам зеленого цвета свечения (длина волны излучения 525 нм), преобразующих падающее коротковолновое излучение в видимое и используемых в дисплеях и мониторах для визуализации ультрафиолетового, рентгеновского и электронного излучения. В настоящее время люминофор зеленого цвета свечения используют при создании телевизоров, люминесцентных ламп, осциллографов, дисплеев и плазменных панелей. Предлагаются химическое соединение силикат цинка, содопированный марганцем и магнием, состава Zn1,93-xMnxMg0,07SiO4, где 0,08 ≤ х≤0,2 и способ его получения, включающий получение исходной смеси оксидов соответствующих металлов и кремния, взятых в стехиометрическом соотношении, с последующим обжигом в три стадии: I стадия – нагревание до температуры 1000-1010оС со скоростью 50оС/ч и выдержка при этой температуре в течение 10 ч с последующим охлаждением до комнатной температуры; II стадия - нагревание до температуры 1200-1210оС со скоростью 50оС/ч и выдержка при этой температуре в течение 10 ч с последующим охлаждением до комнатной температуры; III стадия - нагревание до температуры 1400-1410оС со скоростью 50оС/ч и выдержка при этой температуре в течение 10 ч с последующим охлаждением до комнатной температуры, при этом перед каждой стадией и после третьей стадии продукт тщательно перетирают. Полученное соединение состава Zn1,93-xMnxMg0,07SiO4 обладает наряду с высокой интенсивностью свечения в зеленой области спектра чистотой свечения за счет отсутствия дополнительных “паразитных” пиков свечения. 2 н.п. ф-лы, 2 пр.

Изобретение относится к области получения фотокаталитически активных полупроводниковых пленок. Предложен способ получения фотокаталитически активной пленки, включающий осаждение ионов Cu+2 в виде оксида меди или гидроксида меди из раствора неорганической соли меди на подложку. Осаждение ведут из раствора аммиаката хлорида меди(II) с концентрацией 0,3-3,0 моль/л при температуре 45-75°С при концентрации свободного аммиака 4,0-11,2 моль/л. При этом в качестве подложки используют силикагель, стекло, никелевую фольгу. Способ позволяет получать фотокаталитически активную пленку в одну стадию как на плоских образцах стекла, металлической фольги, так и на порошкообразных материалах, например на порошке силикагеля. 3 ил., 4 пр.
Изобретение может быть использовано для визуализации света ультрафиолетового диапазона в системах светодиодов белого света (WLED) и оптических дисплеях. Люминофор синего свечения представляет собой силикат редкоземельных элементов в наноаморфном состоянии состава Ca2Gd8(1-x)Eu8xSi6O26, где 0,001≤х≤0,5, характеризующийся широкой полосой синего излучения с максимумом при 455 нм, полушириной 77 нм, интенсивностью 14000-14263 отн. ед. и узкой линией красного излучения с максимумом при 615 нм с интенсивностью 400-416 отн. ед. 3 пр.
Изобретение может быть использовано для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в осветительных системах и оптических дисплеях. Сложный силикат редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии используют в качестве люминофора красного свечения. Предложенный люминофор обладает высокой интенсивностью красного свечения, при этом интенсивность оранжевого свечения к красному составляет 14-16%, т.е. уменьшена по сравнению с известными люминофорами. 3 пр.

 


Наверх