Патенты автора Щербакова Татьяна Сергеевна (RU)

Предлагаемое изобретение относится к классу углеродных волокнистых армированных конструкционных полимерных композиционных материалов на основе углеродной графитированной ткани в качестве армирующего наполнителя и эпоксидной матрицы для изготовления изделий антифрикционного назначения. Композит может быть использован для изготовления торцевых уплотнений опорных подшипников и подшипников скольжения. Антифрикционная композиция включает углеродную ткань и полимерное связующее, согласно изобретению армирующим наполнителем является углеродная графитированная при температуре 2400°С ткань, полученная из гидратцеллюлозной ткани, структура волокон которой модифицирована перед карбонизацией интенсивным кратковременным нагреванием и тепловлажностным воздействием, а полимерное связующее дополнительно содержит алюмоорганосилоксановый лак, полиэтиленполиамин и хлорпарафин при следующем соотношении компонентов, мас. ч.: графитированная ткань - 50,0, эпоксидная смола - 49,0, алюмоорганосилоксановый лак - 9,0, полиэтиленполиамин - 2,0 и хлорпарафин - 0,9. Также описывается способ изготовления антифрикционной композиции, который включает изготовление углеродной ткани, приготовление тканевого полуфабриката на основе эпоксидной смолы и растворителя и отличается тем, что исходную гидратцеллюлозную ткань перед карбонизацией подвергает интенсивному кратковременному нагреванию и тепловлажностному воздействию для модификации структуры волокна и после карбонизации до температуры 320°С графитируют в инертной атмосфере при температуре не ниже 2400°С, а в разогретую до температуры 90°С эпоксидную смолу вводят порошок хлорпарафина и перемешивают, затем заливают алюмоорганосилоксановый лак, полиэтиленполиамин и толуол в количестве 46 вес. ч. от массы эпоксидной смолы, дополнительно перемешивают, сливают пропиточный компаунд в отдельную емкость и после непродолжительной выдержки заливают в смеситель, перемешивают и пропитывают графитированную ткань окунанием в пропиточный компаунд с отжимом после пропитки до влажного привеса компаунда до 80%, приготовленный влажный полуфабрикат разрезают на заготовки, выкладывают пакеты из заготовок в пресс-форме и прессуют. 2 н. и 2 з.п. ф-лы, 1 ил., 1 пр.

Предлагаемое изобретение относится к технологии получения высокотемпературных материалов, используемых для теплоизоляции термического оборудования различных производств, преимущественно работающих в условиях вакуума, инертной или восстановительной сред при температурах выше 1000°С, а также в качестве армирующего наполнителя композиционных материалов на основе полимерной, углеродной и керамической матриц, эксплуатируемой в авиакосмической автомобильной технике, в машиностроительном и металлургическом производствах в качестве термостойких фильтров, в медицине, в атомной промышленности. В способе получения углеродных волокнистых материалов из гидратцеллюлозных волокон, включающем обработку исходного целлюлозного волокнистого сырья в растворе компонентов катализатора карбонизации и последующие карбонизацию и графитацию, исходное целлюлозное волокнистое сырье перед и после обработки в растворе компонентов катализатора карбонизации подвергают воздействию микроволнового сверхвысокочастотного излучения с частотой СВЧ-тока 2450 МГц и номинальной мощностью 350 Вт с длительностью облучения 10-30 с, а карбонизацию проводят при температуре 315-325°С в инертной атмосфере. Изобретение позволяет сократить длительность и трудоемкость технологического процесса, уменьшить его энергоемкость за счет исключения энергоемких тепловлажностных операций при подготовке целлюлозных волокон к карбонизации, а также снизить температуру карбонизации и повысить качество получаемых углеродных волокнистых материалов. 1 табл., 1 ил.
Изобретение относится к области медицинских изделий, а именно к получению углеродных нетканых материалов. Способ получения углеродного волокнистого нетканого материала для медицины включает текстильную переработку перед формированием исходных целлюлозных непрерывных нитей в кордную ткань, отделку тепловлажностной обработкой, синтез катализатора карбонизации на поверхности волокон, паровоздушное воздействие, вентилируемую сушку, формирование нетканого материала иглопрокалыванием двух наружных иглопробивных слоев и внутреннего однонаправленного слоя между ними, последующую карбонизацию. При этом углеродный нетканый материал активируют для развития удельной поверхности при нагреве до температуры 950°С в течение 60-180 минут с последующим аппретированием лекарственными веществами и полученный активированный углеродный нетканый материал механически обрабатывают штамповкой или нарезкой до получения требуемых размеров и форм медицинских изделий. Изобретение обеспечивает углеродный волокнистый нетканый материал, обладающий хорошей гибкостью, несминаемостью, повышенной прочностью на разрыв. 1 з.п. ф-лы.
Изобретение относится к области химической технологии преимущественно искусственных волокон и может быть использовано при получении углеродных волокнистых материалов при высокой температуре обработки. Способ получения углеродных графитированных волокнистых материалов включает нагрев материала при непрерывном транспортировании в изолированных одна от другой реакционных зонах - низкотемпературной с нагревом до 450°С и высокотемпературной с нагревом до 3000°С, и удаление из высокотемпературной реакционной зоны в противоположном направлении транспортированию материла выделяющихся летучих продуктов через входной конец транспортного канала. Высокотемпературной обработке подвергают частично карбонизованный углеродный волокнистый материал со степенью карбонизации 0,45-0,60, содержанием углерода 65-72% масс., водорода 4,1-4,4% масс. Летучие продукты, удаляемые из реакционной зоны, поджигают, а частично карбонизованный материал перед введением в транспортный канал подвергают газопламенной обработке в пламени сгорания летучих продуктов. Обеспечивается получение графитированного волокнистого материала с повышенными физико-механическими свойствами. Предел прочности при разрыве полученных графитированных волокнистых материалов составляет не менее 800-1000 МПа, модуль упругости не менее 3000 МПа. 3 з.п. ф-лы, 8 ил.
Изобретение относится к технологии получения высокотемпературных материалов, используемых для теплоизоляции термического оборудования, а также в качестве армирующего наполнителя композиционных материалов. Способ получения комплексного углеродного волокнистого материала включает непрерывную карбонизацию и графитацию нетканого волокнистого полотна, содержащего целлюлозу. При его транспортировании в качестве армирующего компонента или подложки используют гидратцеллюлозную ткань, подвергнутую комплексной отделке. На влажную подготовленную тканевую подложку, импрегнированную раствором катализатора, помещают исходное сухое нетканое полотно. Полученный пакет пропускают между отжимными валками. Затем пакет обрабатывают в перегретой паровоздушной среде, сушат, подвергают интенсивному нагреву в течение 1-3 минут до температуры начала пиролиза макромолекул целлюлозы. Нагретый пакет, не допуская охлаждения, перемещают из камеры интенсивного нагрева в первую зону нагрева камеры карбонизации. Проводят карбонизацию и графитацию пакета. Обеспечивается повышение интенсивности и производительности процесса получения комплексного углеродного волокнистого материала и улучшение его качества. 2 з.п. ф-лы.

Предлагаемое изобретение относится к классу композиционных материалов на основе углерода теплозащитного, конструкционного, химостойкого назначений, подлежащих эксплуатации в условиях статических и динамических нагрузок при нагреве до 2000°С в окислительной среде (авиакосмическая техника, высокотемпературное электротермическое оборудование, комплектация атомных реакторов и т.п.), а также к способам их получения. Углеродкерамический композиционный материал включает керамическую матрицу, армированную углеродным волокнистым материалом. При этом матричный керамический материал дополнительно армирован углеродными нанотрубками и дополнительно содержит по границе раздела фаз наноструктурированной матрицы и армирующего углеволокнистого наполнителя наноструктурированную карбидкремниевую интерфазу при следующем соотношении компонентов, мас.%: углеродные нанотрубки 0,3-1,0, углеродные волокнистые материалы 15-25, наноструктурированная карбидкремниевая интерфаза 2-4, карбид кремния – остальное. Углеродный волокнистый наполнитель пропитывают смесью некоксующейся и коксообразующей олигомерных смол, помещают между транспортной и разделительной полиэтиленовыми пленками и подвергают ионизирующему облучению, которым частично полимеризуют некоксующуюся смолу. Из слоев препрега набирают пакет заготовки объемной структуры, проводят формование, карбонизацию, пропитку раствором поликарбосилана в толуоле, сушку, термостабилизацию, керамизацию и силицирование. Перед помещением пропитанного углеродного волокнистого наполнителя на транспортную и разделительную полиэтиленовые пленки наносят слой (2-10)%-ной суспензии углеродных нанотрубок в смеси олигомерных коксообразующей и некоксующейся смол. При выкладке пакета заготовки углепластика в каждый из слоев препрега засыпают углеродные нанотрубки через съемную перфорированную пластину, находящуюся в непосредственном плотном контакте с выкладываемым слоем препрега, повторяющего его размеры. После карбонизации полученную углерод-углеродную заготовку дополнительно уплотняют пропиткой в (2-10)%-ной суспензии углеродных нанотрубок в растворе поликарбосилана в толуоле. Технический результат изобретения - увеличение прочности композита до 40% по показателю прочности при изгибе и в два раза по показателю прочности при сжатии. 2 н. и 2 з.п. ф-лы, 4 ил. 2 табл.

Изобретение относится к химической технологии, а именно к получению углеродных волокнистых материалов в виде нитей, жгутов, лент, тканей и т.п. путем термохимической обработки гидратцеллюлозных (ГЦ) волокон. Получаемые углеродные волокнистые материалы (УВМ) находят применение в качестве армирующих наполнителей композитов с полимерной, углеродной, керамической и металлической матрицами различного назначения: теплоизоляции высокотемпературного термического оборудования; гибких электронагревателей; электродов электролитических процессов; высокотемпературных фильтров агрессивных газов, жидкостей и расплавов; в производстве спортивных изделий; в медицине. Способ получения углеродных волокнистых материалов из гидратцеллюлозного волокна включает тепловлажностную обработку исходного ГЦ-волокна в растворе химиката-релаксатора, отмывку, сушку, обработку в растворе компонентов катализатора карбонизации, в перегретой паровоздушной среде, окончательную вентилируемую сушку и последующие карбонизацию и графитацию, при этом согласно изобретению исходные ГЦ-волокна перед тепловлажностной обработкой и/или обработкой в растворе компонентов катализатора карбонизации, а также перед карбонизацией подвергают интенсивному кратковременному нагреванию (ИКН) до температуры начала активного пиролиза макромолекул целлюлозы в волокне в течение 1,0-3,5 мин, при этом карбонизации в неокислительной атмосфере с возрастающим зонным нагревом подвергают прекурсор, предварительно интенсивно кратковременно нагретый до температуры возникновения активного пиролиза волокна, а температуру начала термообработки при карбонизации устанавливают на 10-25°С выше значения температуры прекурсора, причем интенсивный кратковременный нагрев ГЦ-волокна осуществляют инфракрасным излучением. Углеродные волокнистые материалы, полученные предлагаемым способом, обладают повышенной на ~10% прочностью, при увеличенной не менее чем в 10 раз производительности процесса. 2 з.п. ф-лы, 2 ил., 1 табл.
Изобретение относится к химической технологии волокнистых материалов и касается способа получения углеродного нетканого волокнистого материала. Способ включает формирование нетканого материала из целлюлозного волокнистого сырья иглопрокалыванием из двух наружных иглопробивных слоев и внутреннего однонаправленного слоя между ними из непрерывных целлюлозных нитей и последующую карбонизацию и графитацию при постепенном повышении температуры нагревания в инертной атмосфере, перед формированием нетканого полотна исходные непрерывные нити текстильно перерабатывают в кордную ткань с плотностью по основе не более 20-40 нитей/10 см, по утку не более 10 нитей/10 см ширины, причем линейная плотность нитей по основе не более 192 текс, а нитей по утку не более 50 текс, затем полученную кордную целлюлозную ткань подвергают отделке тепловлажностной обработкой, синтезу катализатора карбонизации на поверхности волокон, паровоздушному воздействию и окончательной вентилируемой сушке, часть полученной отделанной кордной ткани штапелируют, из штапелированных отделанных волокнистых материалов изготавливают два иглопробивных нетканых полотна, которые размещают с обеих сторон отделанной кордной ткани, иглопрокалывают и получают отделанное нетканое целлюлозное полотно - прекурсор углеродного нетканого полотна. Изобретение обеспечивает создание карбонизованного и графитированного полотна, обладающего гибкостью, несминаемостью, органолептически мягкого и неосыпающегося материала. 1 з.п. ф-лы.

Изобретение относится к производству высокопрочных углеродных жгутов, применяемых для производства высококачественных композитов и касается способа связывания волокнистого полиакрилонитрильного(ПАН) материала при проведении стадий получения из него углеродного волокна. Способ при проведении стадий, требующих непрерывности процесса при получении из него углеродного волокна или получения экспресс - образцов для отработки стадийных режимов и исследования ПАН - прекурсора на пригодность заключается в подвязке к длинномерной волокнистой ПАН-нити коротких углеродных нитей узлом косичка, состоящим их двух углеродных нитей и одной исследуемой таким образом, чтобы углеродная нить была промежуточным звеном между ПАН - нитями, длина узла не менее 100 мм с количеством переплетений 3-4 на 1 см. Изобретение обеспечивает высокое содержание углеродных волокон в композите и максимальную реализацию механических свойств композиционного материала. 5 ил.

 


Наверх