Патенты автора Юксеев Василий Александрович (RU)

Изобретение относится к управлению, преимущественно информационными спутниковыми системами. Способ, обеспечивающий приведение геостационарного космического аппарата (ГКА) в точку стояния и его перевод в новую орбитальную позицию, включает измерение текущих навигационных параметров ГКА, расчет параметров коррекции орбиты и работу двигателей системы коррекции. При этом на этапе дрейфа к заданной долготе решаются вопросы коллокации выбором ее оптимальной схемы и реализации в режиме удаления ГКА от находящихся в области удержания (ОУ) сторонних ГКА. Этим исключается возможность опасного сближения ГКА со сторонними ГКА по окончании этапа его приведения (перевода) в требуемую орбитальную позицию и до начала штатного функционирования ГКА в ОУ. Технический результат состоит в создании и консервации в рамках маневров приведения (перевода) ГКА условий коллокации при удержании ГКА в рабочей ОУ по долготе и широте.

Изобретение относится к области космической техники и может быть использовано при организации коллокации на геостационарной орбите (ГСО). Для подготовки к совместному существованию космических аппаратов (КА) на ГСО выявляют наличие смежных КА в рабочей области удержания (ОУ) и стратегии их маневрирования; выбирают способ коллокации КА и СКА; на минимальном удалении от заданной орбитальной позиции находят ОУ по долготе, свободную от каких-либо КА; приводят в нее КА; в границах этой области проводят совмещенные согласующие коррекции по всему спектру контролируемых параметров так, чтобы при заходе в рабочую ОУ по долготе и широте КА уже являлся участником коллокации на заданной орбитальной позиции; рассчитывают и реализуют план коррекций перевода КА в рабочую ОУ заданной орбитальной позиции.

Изобретение относится к области космической техники и может быть использовано для коллокации (баллистического обеспечения гарантированного сосуществования) в одной и той же области околостационарной орбиты (ОСО) по долготе и широте относительно точки стояния космических аппаратов (КА). Способ состоит в том, что в выборе коридоров высоты на геостационарной орбите (ГСО) протяженностью по долготе не менее 0,2° до начала функционирования космического аппарата с самоколлокацией (КАСК). Коридоры высоты ГСО свободны от КА и близки к желаемой области удержания (ОУ) по долготе. Относительные траектории движения КАСК в фазовой плоскости [ΔL; Δr] - это замкнутые траектории и расположены вне области движения в этой же плоскости других геостационарных КА, где ΔL – отклонение по долготе от номинальной долготы стояния; Δr – отклонение радиуса орбиты КАСК от радиуса ГСО. При этом выход на ГСО КАСК проходит в выбранных коридорах высоты. Повышается безопасность перехода КАСК по высоте относительно номинальной ГСО. 2 з.п. ф-лы, 1 ил.

Изобретение относится к управлению движением космического аппарата (КА) с электроракетным двигателем коррекции (ЭРДК), включающему оперативное уточнение тяги ЭРДК для формирования долговременных планов коррекции орбиты КА. Согласно способу, в полете к КА прикладывают проверочные и корректирующие воздействия, измеряют температуру рабочего тела на выходе из ускоряющего канала ЭРДК, усредняют полученные значения на всем интервале измерения. При определении тяги (F) в известную зависимость F (I, U) от силы тока (I) и напряжения (U) в ЭРДК вводят учет указанной температуры (T), за которую принимают либо ее среднее значение, либо соответствующую техническую характеристику ЭРДК. Техническим результатом изобретения являются повышение точности коррекции параметров орбиты КА и снижение информационной нагрузки на наземный комплекс управления.

Изобретение относится к области космической техники и может быть использовано для уменьшения погрешности прогнозирования движения центра масс навигационного космического аппарата (КА). Способ прогнозирования движения центра масс навигационного КА включает прогнозирование ухода центра масс навигационного КА от номинального положения под действием внешних возмущающих сил. При модуле угла между плоскостью орбиты и направлением на Солнце меньше заданного значения, в наземном баллистическом комплексе на каждом витке рассчитывают угол между плоскостью орбиты и направлением на Солнце на момент начала упреждающего разворота вокруг оси ОХ. По рассчитанному углу с помощью табличных зависимостей определяют параметры упреждающего разворота вокруг оси ОХ. Вычисляют время начала и окончания упреждающего разворота вокруг оси ОХ. Осуществляют моделирование упреждающего разворота вокруг оси ОХ с последующим расчетом сил от солнечного давления, влияющих на движение центра масс космического аппарата. Достигается повышение точности прогноза. 4 ил.

Изобретение относится к космической технике. В способе удержания космического аппарата (КА) в заданном диапазоне долгот и широт рабочей позиции на орбите рассчитывают коррекции наклонения на двух номинально противоположных активных участках (АУ), рассчитывают текущие векторы эксцентриситета на один и тот же момент - момент окончания второго АУ так, что в первом варианте учитывают тягу двигателя только на первом АУ, во втором варианте учитывают тягу двигателя только на втором АУ, по минимальному отклонению одного и другого векторов эксцентриситета от целевого вектора выбирают рабочий АУ и соответствующий ему двигатель. Посредством всей совокупности регулярных коррекций вызывают и поддерживают устойчивые центростремительные эффекты эволюции КА по долготе и эволюции вектора эксцентриситета КА на орбитальной позиции. Техническим результатом изобретения является повышение точности удержания по долготе, сужение пределов удержания КА.

Изобретение относится к космической технике и может быть использовано для автономной коллокации на геостационарной орбите. Переводят векторы наклонения и эксцентриситета на границы разнесенных относительно друг друга областей прицеливания, измеряют параметры орбиты каждого космического аппарата (КА), определяют текущие значения орбитальных параметров каждого КА, приводят КА с самоколлокацией (КАСК) в заданную область удержания по широте (наклонению) и долготе, выявляют стратегию управления движением центра масс смежного КА, уточняют положение центра области прицеливания по наклонению смежного КА, проводят коррекции наклонения вектора наклонения орбиты КАСК в фазовой плоскости с учетом сезона (текущего прямого восхождения Солнца), линии узлов орбиты смежного КА и центра, корректируют с помощью двигателей малой тяги период обращения, наклонения и эксцентриситета орбиты, или уклонения в случае опасного сближения КА. Изобретение позволяет исключить радиопомехи и обеспечивать коллокацию с помощью только центра управления КАСК. 4 ил.

Изобретение относится к управлению движением группы (кластера) космических аппаратов (КА), преимущественно геостационарных спутников Земли. Согласно способу линии узлов и линии апсид орбит мониторингового КА (МКА) и смежных КА (СКА) поддерживают ортогональными. Сумма эксцентриситетов орбит должна составлять ~ 0,0004, а наклонение орбиты МКА относительно орбиты СКА - не менее (14-15) угл. с. С этой целью проводят регулярные коррекции для удержания концов (фазовых) векторов наклонения и эксцентриситета в требуемых областях прицеливания. Кроме того, корректируют долготы (периоды обращения) так, чтобы начало осей координат (отклонениий вдоль орбиты и по радиусу-вектору) совпадало в заданных пределах с центром эллипса дистанцирования от СКА. Переопределяют центры областей прицеливания при корректировке стратегии управления движением центра масс СКА. При снижении уровня приема на МКА излучения антенн, установленных на СКА, переходят в режим приема информации для СКА с наземных антенн. В случае уверенного приема на МКА сигналов указанных антенн СКА в течение 12 ч осуществляют непосредственный круглосуточный мониторинг СКА двумя МКА. Данные МКА установлены на диаметрально противоположных сторонах указанного эллипса дистанцирования. Техническим результатом изобретения является удержание КА на рабочей позиции без помех другим КА и мониторингу СКА. 2 з.п. ф-лы, 6 ил.

Изобретение относится к управлению ориентацией искусственного спутника Земли (ИСЗ) с панелями солнечных батарей (ПСБ). Согласно предложенному способу осуществляют необходимые развороты ИСЗ вместе с ПСБ и, отдельно, ПСБ - вокруг первой и второй осей. При этом антенну ИСЗ ориентируют на Землю, а нормаль к ПСБ - на Солнце. В интервалах неопределенности ориентации ИСЗ на теневых орбитах производят независимые упреждающие программные развороты вокруг первой и второй осей ИСЗ. В разных вариантах этих разворотов после первого из них удерживают ИСЗ в промежуточном положении, а затем восстанавливают штатную ориентацию ИСЗ. Этим достигается повышение точности прогнозирования движения ИСЗ на теневых орбитах и точности измерения дальности до ИСЗ. Техническим результатом изобретения является повышение точности определения потребителями навигационно-временных данных по навигационным ИСЗ. 3 з.п. ф-лы, 12 ил.

 


Наверх