Патенты автора Уваркина Дарья Дмитриевна (RU)

Изобретение относится к реактивированному катализатору гидроочистки дизельного топлива, содержащему, мас.%: Мо – 10,0-16,0; Ni – 2,5-4,5; P – 1,2-2,4; S – 6,7-10,8; γ-Al2O3 – остальное, полученному сульфидированием смеси, содержащей комплексные соединения Ni(C6H6O7), H4[Mo4(С6Н5O7)2O11], H7[PNiMo11O40]; H3[Ni(OH)6Mo6O18], H6[P2Mo5O23] и носитель, содержащий γ-Al2O3, серу в форме сульфат-аниона SO42-, фосфор в форме фосфат-аниона PO43-, в следующих концентрациях, мас.%: Ni(C6H6O7) – 8,8-15,6; H4[Mo4(С6Н5O7)2O11] – 3,2-8,0; H7[PNiMo11O40] – 5,8-11,6; H3[Ni(OH)6Mo6O18] – 3,7-7,1; H6[P2Mo5O23] – 3,0-7,4; носитель - остальное; при этом носитель содержит мас.%: SO42- – 0,5-2,5; PO43- – 2,5-5,5; γ-Al2O3 – остальное. Заявленный катализатор обуславливает оптимальную поверхностную концентрацию активного компонента и оптимальную морфологию частиц, минимизирует нежелательное взаимодействие активных металлов с поверхностью носителя, которое приводит к образованию малоактивных в катализе соединений, позволяет проводить гидроочистку сырья с высоким содержанием вторичных фракций, обеспечивает хороший доступ подлежащих превращениям молекул сырья к активному компоненту, позволяет получать дизельное топливо, содержащее не более 10 ppm серы при невысоких стартовых температурах процесса, что позволяет продлить срок эксплуатации катализатора. 2 табл., 4 пр.
Предложен способ реактивации катализатора гидроочистки, по которому отработанный катализатор после окислительной регенерации пропитывают раствором лимонной и ортофосфорной кислот в смеси воды и бутилдигликоля, имеющим концентрации бутилдигликоля 10-20 об.%, лимонной кислоты 0,42-1,09 моль/л, ортофосфорной кислоты 0,17-0,54 моль/л, далее подвергают термообработке при температуре 60-90оС в течение 20-60 мин, затем сушат на воздухе при температуре 100-220оС в течение 2-6 ч, в результате получают катализатор, имеющий объем пор 0,3-0,55 мл/г, удельную поверхность 120-180 м2/г, средний диаметр пор 7-12 нм и содержащий, мас.%: Ni(C6H6O7) – 8,8-15,6; H4[Mo4(С6Н5O7)2O11] – 3,2-8,0; H7[PNiMo11O40] – 5,8-11,6; H3[Ni(OH)6Mo6O18] – 3,7-7,1; H6[P2Mo5O23] – 3,0-7,4; носитель – остальное; при этом носитель содержит мас.%: SO42- – 0,5-2,5; PO43- – 2,5-5,5; γ-Al2O3 – остальное; что соответствует содержанию в сульфидированных катализаторах, мас.%: Мо – 10,0-16,0; Ni – 2,5-4,5; P – 1,2-2,4; S – 6,7-10,8; γ-Al2O3 – остальное. Технический результат - создание эффективного способа реактивации катализатора гидроочистки. 2 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к способам гидроочистки дизельных топлив, основанных на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390оС, давлении 3-9 МПа, объёмном расходе сырья 1,0-2,5 ч-1, объёмном отношении водород/сырьё 300-600 м3/м3 в присутствии реактивированного катализатора гидроочистки, имеющего объем пор 0,3-0,55 мл/г, удельную поверхность 120-180 м2/г, средний диаметр пор 7-12 нм, включающего в свой состав молибден, никель, фосфор, серу и носитель, при этом молибден, никель и фосфор содержатся в катализаторе в форме смеси комплексных соединений Ni(C6H6O7), H4[Mo4(С6Н5O7)2O11], H7 [PNiMo11O40]; H3[Ni(OH)6Mo6O18], H6[P2Mo5O23], носитель содержит γ-Al2O3, серу в форме сульфат-аниона SO42-, фосфор в форме фосфат-аниона PO43-. Катализатор содержит компоненты в следующих концентрациях, мас.%: Ni(C6H6O7) – 8,8-15,6; H4[Mo4(С6Н5O7)2O11] – 3,2-8,0; H7[PNiMo11O40] – 5,8-11,6; H3[Ni(OH)6Mo6O18] – 3,7-7,1; H6[P2Mo5O23] – 3,0-7,4; носитель – остальное; при этом носитель содержит мас.%: SO42- – 0,5-2,5; PO43- – 2,5-5,5; γ-Al2O3 – остальное; после сульфидирования катализатор содержит, мас.%: Мо – 10,0-16,0; Ni – 2,5-4,5; P – 1,2-2,4; S – 6,7-10,8; γ-Al2O3 – остальное. 1 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к способу гидрокрекинга углеводородного сырья, заключающемуся в превращении высококипящего углеводородного сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0.5-1.5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3 в присутствии гетерогенного катализатора. При этом используемый катализатор содержит одновременно молибден и вольфрам в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)а[НbW2O5(С6Н5O7)2], где: L и С6Н5O7 - частично депротонированная форма лимонной кислоты; х=0 или 2; у=0 или 1; а=0, 1 или 2; b=2-а; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2О3 и аморфного алюмосиликата, при этом компоненты в используемом катализаторе содержатся в следующих концентрациях, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6.2-14.9, Ni(NH4)a[HbW2O5(C6H5O7)2] - 10.2-23.3, аморфный алюмосиликат - 33.4-50.9; γ-Аl2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: МоО3 - 3.6-8.4, WO3 - 5.8-13.5, NiO - 3.1-3.9, аморфный алюмосиликат - 38.3-56.9, γ-Al2O3 - остальное. Технический результат заключается в получении высокого выхода керосиновой и дизельной фракций с низким остаточным содержанием серы при гидрокрекинге высококипящего углеводородного сырья при достаточно мягких условиях проведения процесса. 2 з.п. ф-лы, 2 табл., 6 пр.

Изобретение относится способам получения малосернистых дизельных топлив. Описан способ проведения гидроочистки смесевых и прямогонных дизельных фракций с высоким содержанием серы при температуре 340-380°C, давлении 3,5-8,0 МПа, массовом расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-500 м3/м3 в присутствии гетерогенного катализатора, содержащего, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; что после сульфидирования по известным методикам соответствует содержанию, мас. %: Мо - 10,0-14,0; Со - 3,0-4,3; S - 6,7-9,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Технический результат - получение дизельного топлива, содержащего менее 10 ppm серы при гидроочистке прямогонных и смесевых дизельных фракций с высоким содержанием серы. 4 з.п. ф-лы, 7 пр., 1 табл.

Изобретение относится способам получения сырья гидрокрекинга с пониженным содержанием серы и азота. Описан способ гидроочистки сырья гидрокрекинга, заключающийся в гидроочистке нефтяных фракций, имеющих температуру начала кипения выше 360°С, в присутствии гетерогенного катализатора, где используемый катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное Технический результат - получение сырья гидрокрекинга с низким содержанием серы и азота при гидроочистке нефтяных фракций, имеющих температуру начала кипения выше 360°C, содержащих до 3,5% серы и до 0,2% азота. 4 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к способам получения малосернистого сырья каталитического крекинга. Описан способ получения малосернистого сырья каталитического крекинга, заключающийся в гидроочистке вакуумного газойля с высоким содержанием серы в присутствии гетерогенного катализатора, где используемый катализатор содержит, мас. %: [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 – остальное. Технический результат - получение сырья каталитического крекинга, содержащего менее 300 ppm серы при гидроочистке вакуумного газойля с высоким содержанием серы. 4 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к способам гидроочистки дизельных топлив, основанным на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390°C, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-600 м3/м3 в присутствии регенерированного катализатора, имеющего объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, включающего в свой состав молибден, кобальт, серу и носитель, при этом молибден и кобальт содержатся в катализаторе в форме смеси комплексных соединений Co(C6H6O7), H4[Mo4(C6H5O7)2O11], H3[Co(OH)6Mo6O18], сера содержится в форме сульфат-аниона SO42-, в следующих концентрациях, мас. %: Co(C6H6O7) - 5,1-18,0; H4[Mo4(C6H5O7)2O11] - 7,5-15,0; H3[Co(OH)6Mo6O18] - 4,3-19,0; SO42- - 0,5-2,30; носитель - остальное, при этом цитраты кобальта могут быть координированы к цитрату молибдена H4[Mo4(C6H5O7)2O11] и к 6-молибдокобальтату H3[Co(OH)6Mo6O18]. Технический результат - изобретение позволяет получать гидроочищенные дизельные топлива, содержащие не более 10 ppm серы в присутствии регенерированных катализаторов. 2 з.п. ф-лы, 2 табл., 6 пр.

Изобретение относится к катализатору для гидроизомеризации дизельного топлива, который может быть использован для получения низкозастывающего дизельного топлива с высокими выходом целевого продукта. Катализатор получен на основе наночастиц металлов платиновой группы, нанесенных на твердый носитель методом лазерного электродиспергирования, с обеспечением аморфной структуры наночастиц платиновых металлов, размеров не менее 90% частиц платиновых металлов в пределах 1,0-4,0 нм и количества металла в катализаторе менее 0,05 мас. %. Заявленный катализатор характеризуется сниженным содержанием дорогостоящих металлов платиновой группы и при гидроизомеризации дизельного топлива обеспечивает низкую температуру фильтруемости и высокий выход продукта. 4 з.п. ф-лы, 2 табл., 3 ил., 2 пр.

Изобретение относится к катализатору гидрокрекинга углеводородного сырья, включающему никель, молибден, алюминий и кремний. При этом никель и молибден содержатся в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6Н5О7; x=0 или 2; y=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата. Компоненты в катализаторе содержатся в следующих концентрациях, мас.%: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.%: МoО3 - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-Al2O3 - остальное. При этом массовое соотношение Si/Al в аморфном алюмосиликате составляет от 0,6 до 0,85, причем рентгенограммы аморфных алюмосиликатов содержат широкий пик в области 16,5-33,5° с максимумом 23,1-23,4°. Технический результат - высокая активность в гидрокрекинге углеводородного сырья и высокая селективность по отношению к дизельной фракции. 1 з.п. ф-лы, 3 табл., 6 пр.

Изобретение относится к способу приготовления катализатора гидрокрекинга углеводородного сырья, включающего в свой состав никель, молибден, алюминий и кремний. Способ включает приготовление гранулированного носителя, содержащего оксид алюминия и 50-80 мас. % аморфного алюмосиликата с массовым отношением Si/Al от 0,6 до 0,85, нанесение на полученный гранулированный носитель биметаллических комплексных соединений [Ni(Н2O)x(L)y]2[Мо4O11(С6Н5O7)2], где L - частично депротонированная форма лимонной кислоты С6Н5О7; x=0 или 2; y=0 или 1, сушку катализатора при температуре 100-250°С. Компоненты в получаемом катализаторе содержатся в следующих концентрациях, мас. %: [Ni(Н2O)x(L)y]2[Мо4O11(С6Н5O7)2] - 13,1-23,3; аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 7,0-13,0; NiO - 1,8-3,4; аморфный алюмосиликат - 43,1-66,9; γ-Al2O3 - остальное. Технический результат - использование в гидрокрекинге катализатора, приготовленного заявляемым способом, обеспечивает получение дизельной фракции с высоким выходом. 3 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к способу гидрокрекинга углеводородного сырья, заключающемуся в превращении высококипящего сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3 в присутствии гетерогенного катализатора. При этом используемый катализатор содержит никель и молибден в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты С6Н6O7; х=0 или 2; у=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Аl2Oз и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: МoО3 - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-Аl2O3 - остальное. Предлагаемый способ позволяет получить средние дистилляты с низким остаточным содержанием серы. 2 з.п. ф-лы, 3 табл., 6 пр.

Изобретение относится к катализаторам для гидроизомеризации дизельного топлива, способам приготовления катализаторов и процессам получения дизельного топлива с низкой температурой застывания. Описан катализатор гидроизомеризации, включающий в свой состав цеолит типа ZSM-23, бор, палладий и оксид алюминия, содержащий компоненты в следующих концентрациях, мас.%: цеолит ZSM-23 - 50-80, палладий - не более 0,6; бор 1,0-3,0; Al2O3 - остальное, имеющий объем пор не менее 0,25 см3/г, удельную поверхность не менее 150 м2/г, средний диаметр пор не менее 4 нм. Способ приготовления катализатора заключается в пропитке носителя, содержащего цеолит ZSM-23, раствором борной кислоты с последующей сушкой и прокалкой, и последующей пропитке водным раствором нитрата палладия с последующей сушкой и прокалкой. Описан процесс гидроизомеризации дизельного топлива, содержащего не более 30 ppm серы, проводящийся при 320-340°C, давлении 2,5-6,5 МПа, объемной скорости подачи сырья - 2-6 ч-1, объемном отношении водород/сырье - 200-600 нм3/м3 в присутствии катализатора приведенного выше состава. Технический результат - получение катализатора, позволяющего проводить процесс гидроизомеризации с получением дизельных топлив с температурой застывания -40°C и ниже с выходом более 89% и цетановым числом более 52. 3 н. и 9 з.п. ф-лы, 2 табл., 4 пр.

 


Наверх