Патенты автора Чижевская Светлана Владимировна (RU)

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного электроизоляционного материала, окон или линз в оптических приборах, оптических элементах в ИК области спектра. Способ получения наноструктурированных порошков твердых растворов на основе иттрий - алюминиевого граната с редкоземельными элементами включает приготовление маточного раствора, упаривание до концентрированного состояния, совместное обратное соосаждение через распыление маточного раствора с последующим фильтрованием осажденного порошка прекурссора, декантирование, сушку, и термообработку при 1000°С, при этом маточный раствор азотнокислых солей иттрия, алюминия и азотнокислые соли редкоземельных элементов Er, Tm, Но или их композиций Er-Tm; Er-Но; Er-Tm-Но в пределах 1,0-50,0 ат.% растворяют в дистиллированной воде при нагревании и упаривают до концентрации 0,88÷0,92 моль/л, распыляют в 25% раствор гидроксида аммония, охлажденный до температуры 0°С-2°С сжатым воздухом через капилляр с обеспечением дробления струи насыщенного маточного раствора до туманообразного состояния с получением порошка прекурсора Y3-XMeXAl5O8(ОН)4, где Ме=Er, Tm, Но, х=1,5; 0,05; 0,01, соответственно, пульпу декантируют в дистиллированной воде с добавлением 0,05 мас.% поливинилпирролидона от количества раствора гидроксила аммония с обеспечением образования прослоек, препятствующих гидратации и объединению частиц в плотные агломераты, фильтруют, порошки высушивают горячим воздухом при 60°С-100°С на распылительной сушилке и подвергают механоактивации на мельнице вибрационного или планетарного типа в фторопластовых барабанах циркониевыми шарами диаметром 1,0 мм в течениe 120 минут в среде этанола при соотношении порошка прекурсора к суммарному количеству циркониевых шаров и этанола, равном 1:6,5; этанол удаляют путем сушки суспензии с получением гранул на распылительной сушилке. Способ позволяет одностадийно получать наноструктурированные порошки с высоким гомогенным распределением редкоземельных элементов в объеме кристаллитов порошка, размером частиц 40,0-65,0 нм, дисперсностью по величине удельной поверхности более 120 м2/г, в результате чего керамика при изготовлении из этих порошков получается с высоким светопропусканием и оптической однородностью. 3 ил., 1 табл., 5 пр.

Изобретение относится к области технологии ядерных материалов и может быть использовано для конверсии тетрафторида урана, в том числе обедненного, в наноструктурированные оксиды урана и с получением другого ценного неорганического вещества - тетрафторида кремния. Способ заключается в смешивании в стехиометрическом соотношении тетрафторида урана и кремнезема, предварительно подвергнутого механоактивации в присутствии 0,5-1,5 мас.% неорганического соединения щелочного элемента, грануляции гомогенизированной шихты, сушки гранул при температуре от 100 до 250°С и последующей термообработки гранул при температуре не выше 600°С в течение времени от 0,5 до 1 ч. В качестве неорганического соединения щелочного элемента используют фторид лития, или калия, или рубидия, или цезия, или хлорид, или нитрат, или карбонат, или сульфат, или гидроксид, или фосфат лития, натрия, калия, рубидия или цезия. Для получения U3O8 термообработку проводят в среде сухого воздуха, для получения UO2 - в среде осушенных инертных газов. Техническим результатом является снижение энергозатрат и высокий выход продуктов, в том числе высокочистого тетрафторида кремния. 4 ил., 1 табл., 15 пр.

Изобретение предназначено для комплексной очистки почвогрунтов, загрязненных ртутью (амальгамой) или/и радионуклидами. Способ очистки почвогрунта от загрязнений включает приготовление пульпы путем перемешивания почвогрунта с водой на месте отбора почвогрунта с отделением фракции с размером фрагментов более 100 мм в модуле приготовления пульпы, дезинтеграцию пульпы и почвенных агрегатов в модуле дезинтеграции с выделением растительных остатков и фракции с размером фрагментов более 10 мм. Проводят сгущение пульпы. Пульпу в модуле гидроклассификации разделяют на песковую и тонкодисперсную фракции, а тонкодисперсную фракцию направляют в модуль обезвоживания, выполненный в виде концентратора, где проводят ее сгущение и обезвоживание с последующим ее захоронением. В случае наличия ртути и амальгам в почвогрунте их выделяют в модуле сгущения. Технический результат - реализация малоотходной безреагентной технологии очистки почвогрунтов от ртути, ее водонерастворимых форм, амальгамы или/и радионуклидов в едином технологическом процессе без переналадки оборудования, выделение металлической ртути или ее амальгамы. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана, в том числе обедненного, в октаоксид триурана с получением ценного прекурсора поликристаллического кремния - тетрафторида кремния. Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана заключается в том, что смешивают тетрафторид урана с диоксидом кремния, который предварительно подвергают механоактивации в присутствии фторида натрия 0,5-3% масс., гомогенизируют смесь в стехиометрическом соотношении, гомогенизированную шихту гранулируют, сушат при температуре 250-300°C и проводят термообработку гранул в среде сухого воздуха в течение 1-2 ч при температуре не выше 600°C. Изобретение обеспечивает высокий выход высокочистого тетрафторида кремния, не загрязненного летучими соединениями урана, а также снижение температуры процесса, что позволяет использовать более дешевые конструкционные материалы. 1 ил., 1 табл., 16 пр.

Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана. Производят получение тетрафторида кремния и диоксида урана из тетрафторида урана. Берут диоксид кремния и подвергают его механоактивации. Затем осуществляют его гомогенизацию с тетрафторидом урана в стехиометрическом соотношении. Гомогенизированную шихту гранулируют, сушат при температуре 250-300°C и подвергают термообработке в среде сухого инертного газа. Изобретение позволяет проводить конверсию тетрафторида урана с высоким выходом высокочистого тетрафторида кремния, не загрязненного летучими соединениями урана, при температуре не выше 600°C. 1 ил., 1 табл., 7 пр.

 


Наверх