Патенты автора Щелкунов Николай Николаевич (RU)

Изобретение относится к медицинской технике, в частности к мобильным паразитологическим лабораториям. Мобильная паразитологическая лаборатория выполнена на базе транспортного средства и содержит водительский и лабораторный отсеки. Лабораторный отсек включает в себя входной санитарно-шлюзовой модуль, модуль для пациентов и приема проб, транспортный модуль, оборудованный средствами обеспечения автономного функционирования мобильной лаборатории, диагностический модуль и аналитический модуль. Аналитический модуль оснащен переносным ударозащищенным персональным компьютером, компьютером, маршрутизатором, модулем беспроводной передачи данных, навигационным модулем, портативным рамановским спектрометром и микроскопом с фотоприставкой. Модуль беспроводной передачи данных подключен к маршрутизатору с локальной вычислительной компьютерной сетью, подключенной к автоматизированной информационно-справочной системе. Изобретение повышает оперативность диагностики, анализа и мониторинга за ситуацией. 8 з.п. ф-лы.
Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности комплекса и обеспечении быстрого ввода в эксплуатацию утраченных из-за неисправности оборудования ресурсов. Аппаратно-вычислительный комплекс с повышенными надежностью и безопасностью в среде облачных вычислений включает в себя связанные между собой и соединенные посредством сети первую группу рабочих ЭВМ и вторую группу ЭВМ для хранения программных сессий, а также ЭВМ управления, через которую связаны вторая группа ЭВМ для хранения программных сессий, высокопроизводительные вычислительные ресурсы и разделяемые файловые хранилища, причем в него дополнительно введены гипервизор, система обеспечения безопасности, включающая в себя модуль обнаружения и предотвращения вторжений, модуль межсетевого экранирования и модуль защиты от несанкционированного доступа и система обеспечения отказоустойчивости, включающая в себя модуль обеспечения отказоустойчивости на уровне аппаратных ресурсов, модуль мониторинга сервисных виртуальных машин и модуль обеспечения отказоустойчивости сервисов.
Изобретение относится к области систем облачных вычислений. Технический результат заключается в снижении времени перевода нагрузки между узлами. Модуль виртуализации связан со второй группой ЭВМ для хранения программных сессий и с ЭВМ управления. Модуль диспетчеризации связан со второй группой ЭВМ для хранения программных сессий и с ЭВМ управления, средство управления графиком связано со второй группой ЭВМ для хранения программных сессий и с ЭВМ управления. Модуль виртуализации выполнен с возможностью создания виртуальной машины (ВМ) посредством эмуляции, по меньшей мере, одного аппаратного ресурса, выбранного из: высокопроизводительных вычислительных ресурсов, разделяемых файловых хранилищ, памяти и создания однозначных связей между, по меньшей мере, одним выбранным аппаратным ресурсом и его эмуляцией. Модуль диспетчеризации выполнен с возможностью управления процессами выделения/возврата аппаратных ресурсов для ВМ, назначения для каждой ВМ приоритета в момент ее запуска и назначения ей параметров вес и лимит, где параметр вес определяет величину реального доступного процессорного времени, а параметр лимит определяет величину максимального доступного процессорного времени. Средство управления графиком выполнено с возможностью распределения сетевых ресурсов между ВМ на основании информации, полученной от ЭВМ управления.

Изобретение относится к области определения количества потребляемой электроэнергии нового разрабатываемого вычислителя. Техническим результатом является повышение эффективности определения энергопотребления разрабатываемого вычислителя за счет определения энергопотребления вычислительно-интенсивных участков выполнения программы. Способ оценки энергопотребления вычислителя содержит запуск программного обеспечения на вычислителе со старой процессорной архитектурой; выделение профилировщиком в программном оборудовании наиболее вычислительно-интенсивных участков (ВИУ) выполнения программы, при этом во время каждого ВИУ выполнения программы синхронно замеряют точное энергопотребление вычислительного кластера старой архитектуры и/или узлов, задействованных в ходе расчета; определение для каждого ВИУ процессорных инструкций каждого типа; запуск этого же программного обеспечения на симуляторе, симулирующем запуск и работу программного обеспечения на кластере, имеющем новую процессорную архитектуру; проведение вычислений в части ВИУ в симуляторе; определение при помощи симулятора новой архитектуры для каждого ВИУ точного числа процессорных инструкций каждого типа; и пропорциональный пересчет энергопотребления старой архитектуры на новую архитектуру, используя соотношение между числом процессорных инструкций, потребовавшихся для выполнения ВИУ на старой и новой архитектуре. 1 ил.

 


Наверх