Патенты автора Черкесова Наталья Васильевна (RU)

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов. Способ изготовления полупроводниковых приборов включает процессы формирования активных областей полевого транзистора и контактов к ним. При этом согласно изобретению контакты формируют путем последовательного нанесения при температуре 250°С и давлении 2*10-5Па слоя германия толщиной 150 нм со скоростью осаждения 3 нм/с, слоя Ni толщиной 200 нм со скоростью осаждения 1 нм/с с последующим отжигом при температуре 300°С в течение 15 мин в атмосфере аргона. Изобретение позволяет повысить процент выхода годных приборов и улучшить их надежность. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с силицидом молибдена с пониженным значением контактного сопротивления. Способ изготовления полевых транзисторов включает процессы формирования активных областей полевого транзистора и электродов к ним, подзатворного диэлектрика и силицида, при этом силицид молибдена - МоSi2 формируют на подложках кремния р-типа проводимости с ориентацией (100), с удельным сопротивлением 10 Ом⋅см путем осаждения пленки молибдена Мо на пластине кремния при давлении 6,5⋅10-9 Па, температуре подложки 700°С, со скоростью роста 0,1 нм/с и последующим отжигом в форминг-газе при температуре 900°С в течение 60 мин. Изобретение обеспечивает возможность снижения контактного сопротивления, улучшение параметров приборов, повышение качества и технологичности и увеличение процента выхода годных. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления оксинитрида кремния, устойчивого к дефектообразованию и воздействию горячих носителей. Способ изготовления полевых транзисторов включает формирование азотированного оксидного слоя, активных областей полевого транзистора и электродов к ним, согласно изобретению формируют азотированный оксидный слой - оксинитрид кремния путем создания слоя пористого кремния толщиной 280-300 нм, пористостью 74% анодным окислением в электрохимической ячейке с 5 вес. % HF, плотностью тока 0,5 мА/см2, с последующим азотированием пластин при 1000°С в среде аммиака в течение 1 ч и окисления в парах воды при 850°С в течение 30 мин. Изобретение обеспечивает снижение дефектности и повышение устойчивости к воздействию горячих носителей, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов. Способ формирования силицида включает электронно-лучевое нанесение палладия толщиной 50 нм в вакууме на кремниевую подложку и отжиг, при этом согласно изобретению нанесение осуществляют испарением, которое проводят в вакууме при давлении 1·10-5 Па с последующим воздействием пучка ионов Ar энергией 200 кэВ под углом 7° дозой 3·1016 см-2 и плотностью тока ионного пучка 1,5 мкА/см2 при температуре 50°С со скоростью роста 0,3 нм/с, а отжиг осуществляют при температуре 200°С в вакууме 1·10-3 Па в течение 10 мин. Изобретение обеспечивает возможность снижения сопротивления контакта прибора, улучшение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов. Способ состоит в следующем: на кремниевых пластинах после создания тонкого затворного оксида по стандартной технологии поверх нее над канальной областью формируют слой нитрида кремния Si3N4 толщиной 40-80 нм при расходе газовой смеси SiH4-N2 35-40 см3/мин в реакторе, давлении газовой смеси 0,4 мм рт.ст., ВЧ-мощности 100 Вт, концентрации силана в смеси 1 мол.%, температуре подложки 400°С и скорости осаждения нитрида кремния Si3N4 0,3 нм/с. Нанесение слоя нитрида кремния поверх слоя оксида улучшает рабочие характеристики полупроводниковых приборов, т.к. при облучении в двухслойных системах SiO2-Si3N4 происходит уменьшение встроенного заряда за счет компенсации положительного заряда в диоксиде кремния отрицательным зарядом, накопленным в нитриде кремния, и повышается радиационная стойкость. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов. Согласно изобретению предложен способ формирования полупроводниковых приборов, включающий формирование на кремниевой пластине тонкого затворного оксида толщиной 13 нм термическим окислением при 1000°С в течение 40 мин в сухом О2 с добавкой 3% HCl, отжиг в аргоне 15 мин, нанесение поверх слоя оксида кремния над канальной областью слоя поликремния толщиной 300 нм пиролитическим разложением силана SiH4 при температуре 670°С в аргоне, после чего поликремний легируют ионами бора с дозой 1013 см-2 энергией 90 кэВ и полученную полупроводниковую структуру отжигают под действием сканирующего аргонного лазера мощностью 10-15 Вт. Изобретение обеспечивает снижение значений тока утечки, технологичность способа, улучшение параметров приборов, повышение качества и увеличение процента выхода годных приборов. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления нитрида кремния с пониженным значением дефектности. Технология способа состоит в следующем: на полупроводниковой Si подложке формируют нитрид кремния путем пропускания газообразного азота N2 через смесь гидрозина N2H4 и силана SiH4 при температуре подложки 300°С, давлении газа 15 Па, давлении силана 10 Па, отношении парциальных давлений газообразных источников Pr(N2H4+N2)/Pr(SiH4)=8 и скорости осаждения нитрида кремния 1,5 нм/с, с последующим отжигом при температуре 400°С в атмосфере Аг в течение 30 мин. Активные области полупроводникового прибора и электроды к ним формировали по стандартной технологии. Технический результат: снижение дефектности, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления межсоединений с пониженным значением сопротивления.Технология способа состоит в следующем: методом электронно-лучевого испарения наносят нижний слой хрома толщиной 5-20 нм со скоростью осаждения 0,1 нм/с при давлении 10-9 мм рт.ст., затем наносят слой меди толщиной 450 нм со скоростью осаждения 0,5 нм/с, затем верхний слой хрома толщиной 5-30 нм со скоростью осаждения 0,1 нм/с с последующим отжигом при температуре 400°C в атмосфере Ar-Н2 в течение 30 мин. Активные области полупроводникового прибора и электроды к ним формировали по стандартной технологии. Изобретение обеспечивает снижение сопротивления, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов с низким сопротивлением. Способ изготовления контактов включает нанесение на p-Si подложку пленки титана с последующей низкотемпературной обработкой при температуре 650°С в течение 30 с в потоке азота N2 и с последующей высокотемпературной обработкой, при этом согласно изобретению формируют контакт TiNxOy/TiSi на p-Si подложке нанесением пленки Ti толщиной 70 нм со скоростью 0,5 нм/с, при температуре подложки 450°С, давлении 10-5 Па, с последующей низкотемпературной обработкой в потоке азота N2 200 см3/мин, а последующую высокотемпературную обработку проводят при температуре 950-1050°С в течение 10 с в атмосфере аммиака NH3. Изобретение обеспечивает возможность улучшить надежность и повысить процент выхода годных приборов. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов. Способ формирования полевого транзистора согласно изобретению включает процессы создания защитного изолирующего слоя оксинитрида кремния на полупроводниковой подложке, активных областей полевого транзистора и электродов к ним, при этом слой оксинитрида кремния формируют бомбардировкой пластин кремния р-типа при комнатной температуре ионами азота N+2 и кислорода O+2 с общей дозой ионов 1.1017-1.1018 см-2, энергией 30 кэВ, при плотности тока ионного пучка 10-15 мкА/см2 с последующей термообработкой в вакууме сначала при температуре 550°С в течение 2 ч 15 мин, а затем при температуре 900°С в течение 15 мин. Изобретение обеспечивает повышение устойчивости приборов к воздействию горячих носителей за счет использования в качестве подзатворных изоляторов более устойчивого к дефектообразованию материала - оксинитрида кремния. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с пониженным значением тока подложки и повышенной стойкостью к воздействию горячих носителей. Способ состоит в следующем: формируют активные высоколегированные n+ области истока-стока с использованием слоев защитного SiО2 и Si3N4 в качестве маски, имплантацией ионов мышьяка As+ с энергией 60 кэВ, концентрацией легирующей примеси (1-2)⋅1020 см-3, а затем после удаления Si3N4 маски имплантацией ионов фосфора Р+ с энергией 30 кэВ, концентрацией легирующей примеси (1-3)⋅1015 см-3 формируют слаболегированные n- области истока-стока, расположенные между n+ областями истока и стока. Затем проводят лазерный отжиг с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергия импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С. Слои SiО2 и Si3N4 формировали по стандартной технологии. Создание слаболегированных n- областей стока уменьшает значение электрического поля в канале транзистора и значение тока подложки, соответственно, повышается стойкость к воздействию горячих носителей, т.к. ток подложки является индикатором эффективности генерации горячих носителей. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления мелкозалегающих переходов с пониженным значением токов утечек. Технология способа состоит в следующем: на пластинах кремния п-типа проводимости с удельным сопротивлением 4,5 Ом*см наносится слой Тi 110 нм, затем проводится термообработка при температуре 950°С в течение 35 с в атмосфере азота для образования силицида, потом проводят легирование слоя силицида ионами бора имплантацией с энергией 50 кэВ, дозой 7,5*1015 см-2 и термообработку при температуре 900°С в течение 20 с, в атмосфере азота. При термообработке происходит диффузия примесей из легированного слоя силицида, в результате образуется переход глубиной 80 нм. Технический результат заключается в снижении токов утечек, обеспечении технологичности, улучшении параметров приборов, повышении качества и увеличении процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов из силицида вольфрама с пониженным значением контактного сопротивления. Способ реализуется следующим образом: на пластинах кремния р-типа проводимости с ориентацией (100), удельным сопротивлением 10 Ом⋅см, после формирования областей стока/истока и осаждения слоя подзатворного диэлектрика полевого транзистора формируется пленка силицида вольфрама SiW2 электронно-лучевым испарением толщиной 150 нм из двух источников в вакууме 1⋅10-5 Па, со скоростью роста 0,5 нм/с для Si и 0,2 нм/с для W, с последующим отжигом сначала при температуре 625°С в течение 30 мин, а затем при температуре 1000°С в течение 20 с, в инертной среде. Активные области n-канального полевого транзистора и электроды к ним формировали по стандартной технологии. Технический результат заключается в снижении контактного сопротивления, обеспечении технологичности, улучшении параметров приборов, повышении качества и увеличении процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления многослойных проводников с пониженным значением контактного сопротивления. Согласно изобретению многослойный контакт Au/Pd/Ni/Ge формируют путем последовательного осаждения пленки Ge толщиной 20 нм при давлении 1*10-5 Па, со скоростью осаждения 3 нм/с, пленки никеля Ni толщиной 15 нм при давлении 1*10-5 Па, со скоростью роста 1 нм/с, последующим осаждением слоя Pd толщиной 50 нм при давлении 1*10-5 Па, со скоростью осаждения 0,5 нм/с, и Au толщиной 100 нм, и термообработкой при температуре 450°С в течение 2,5 мин в атмосфере форминг газа. Изобретение обеспечивает снижение контактного сопротивления, улучшение параметров приборов и повышение технологичности. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов. Технология способа состоит в следующем: на кремниевой подложке 10 Ом*см (100), р-типа проводимости после обработки излучением галогенных ламп в Н2 при температуре 1000°С в течение 10 с формируют пленку оксидного слоя. Окисление проводили в среде сухого кислорода О2 при температуре 1100-1150°С в течение 20 с со скоростями нагрева и охлаждения 50°С/мин до толщины 20 нм при росте пленки оксидного слоя 1 нм/с. Изобретение обеспечивает возможность снижения токов утечки, обеспечения технологичности, улучшения параметров приборов, повышения качества и увеличения процента выхода годных.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с повышенным коэффициентом усиления. Способ изготовления полупроводникового прибора включает формирование на кремниевой подложке эпитаксиального слоя, областей коллектора, базы и эмиттера, при этом область эмиттера формируют ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергией импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С. Изобретение позволяет повысить процент выхода годных приборов и улучшить их надёжность. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления силицида титана с пониженным значением контактного сопротивления. Способ изготовления полупроводниковых приборов включает процессы формирования активных областей полевого транзистора и электроды к ним, подзатворого диэлектрика и силицида титана, при этом согласно изобретению на подложках кремния р-типа проводимости с ориентацией (100), с удельным сопротивлением 10 Ом*см формируют силицид титана путем осаждения пленки титана Тi толщиной 75 нм при давлении 3*10-6Па, температуре подложки 60°С, со скоростью роста 1 нм/с и последующей обработкой структур ионами Si с энергией 85 кэВ дозой 1*1015-1*1016 см-2, с низкотемпературным отжигом при температуре 650°С в течение 30 с в атмосфере азота N2 и с проведением высокотемпературного отжига при температуре 1050°С в течение 20 с в атмосфере азота N2. Изобретение обеспечивает снижение контактного сопротивления, увеличение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии увеличения адгезии к полупроводниковой структуре. Техническим результатом является увеличение адгезии, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. Технология способа состоит в следующем в процессе производства полупроводниковых приборов после формирования активных областей, диоксида кремния и нанесения металлизации полупроводниковую структуру обрабатывают лазером с плотностью энергии в импульсе 2-5Дж/см2 с последующим отжигом при температуре 1000°С в атмосфере азота в течение 7 мин.
Изобретение относится к области технологии производства полупроводниковых приборов. Способ формирования активных областей полевых транзисторов включает формирование активных областей полевого транзистора на кремниевой подложке n-типа проводимости с удельным сопротивлением 4,5 Ом*см. На подложку наносят слой титана Ti толщиной 110 нм и проводят термообработку при температуре 950°C в течение 70 с в атмосфере азота N2, затем выращивают пленку пиролитического окисла толщиной 150 нм и проводят ионную имплантацию бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и с последующей термообработкой при температуре 900°C в течение 20 с в атмосфере азота N2. Изобретение обеспечивает снижение токов утечек, технологичность, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.
Способ формирования пленки оксинитрида кремния толщиной 50 нм на подложке кремния при температуре 380°С, давлении 133 Па, при потоке SiН4 – 390 см3/мин, N2О - 1300 см3/мин и NН3 -1200 см3/мин, с последующей термообработкой при температуре 850°С в течение 10 мин позволяет повысить процент выхода годных приборов и улучшить их надёжность.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с пониженным контактным сопротивлением. Сущность: на пластинах GaAs после создания активных областей полупроводникового прибора формировали контакты Pd/Ni/Ge последовательным нанесением в вакууме при давлении 10-5 Па слоя германия (Ge) толщиной 20 нм со скоростью осаждения 3 нм/с, слоя никеля (Ni) толщиной 15 нм со скоростью осаждения 1 нм/с, слоя палладия (Pd) толщиной 50 нм со скоростью осаждения 0,5 нм/с при температуре подложки 100°С с последующей термообработкой при температуре 450°С в форминг-газе в течение 2 мин. Затем наносили Au, по стандартной технологии, толщиной 100 нм и проводили отжиг при температуре 400°С в течение 30 с в атмосфере водорода. Технический результат заключается в снижении сопротивления контакта, обеспечении технологичности, улучшении параметров приборов, повышении качества и увеличении процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления конденсаторов с пониженными токами утечки. Сущность: способ изготовления полупроводникового прибора заключается в формировании двухслойного диэлектрика титаната бария BaTiO3 магнетронным ВЧ-распылением, при давлении кислорода 13,3⋅10-4 Па, ВЧ-мощности 5 Вт⋅см-2 и скорости осаждения 0,3 нм/с: нижний слой - поликристаллический толщиной 300 нм, при температуре подложки 600°С, верхний слой - аморфный толщиной 20 нм, при температуре подложки 450°С. Технический результат заключается в повышении процента выхода годных приборов и улучшении их надежности. 1 табл.
Использование: для изготовления полевого транзистора с пониженным значением токов утечек. Сущность изобретения заключается в том, что способ изготовления полупроводникового прибора включает формирование на пластинах кремния p-типа тонкого слоя оксида и слоя поликремния, при этом поликремний формируют со скоростью осаждения 8,5 нм/с при скорости потока газа-носителя аргона 2,7 см/с и скорости потока силана SiN4 1,0% от скорости потока газа-носителя при температуре подложки 800°С и последующей имплантацией ионами азота с энергией 12,5 кэВ и дозой 1*1017см-2 при температуре подложки 100°С и проведением отжига в атмосфере водорода в течение 15 минут при температуре 350°С. Технический результат: обеспечение возможности снижения токов утечек, обеспечение технологичности, улучшения параметров приборов, повышения качества и увеличения процента выхода годных. 1 табл.
Использование: для создания силицида никеля. Сущность изобретения заключается в том, что способ изготовления силицида никеля содержит осаждение пленки никеля Ni толщиной 30-50 нм в вакууме 3*10-6Па со скоростью роста 2 нм/с и последующей обработкой структур ионами ксенона Хе при температуре 175°С с энергией 300 кэВ, дозой 1*1015 см-2 и отжигом при температуре 240°С в течение 20 мин в атмосфере. Технический результат: обеспечение возможности снижения контактного сопротивления, обеспечения технологичности, улучшения параметров приборов. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления кремниевого биполярного n-p-n-транзистора с пониженными токами утечки. Способ изготовления полупроводникового прибора путем ионного внедрения бора в нелегированный поликристаллический кремний с энергией (25-30) кэВ, дозой 4*1014-3*1015 см-2, с последующей термообработкой в атмосфере азота в два этапа: сначала при температуре 950°С в течение 50 мин, затем при температуре 1100°С в течение 120 мин, с последующим отжигом в течение 3 мин в атмосфере водорода при температуре 850°С. Техническим результатом изобретения является снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии изготовления полупроводниковой структуры, в частности к технологии изготовления эпитаксиальной пленки кремния с низкой дефектностью. Предложенный способ изготовления полупроводниковых структур путем формирования пленки кремния на кремниевой подложке со скоростью роста 20 нм/мин, при температуре 750°С, давлении 1,33⋅10-5 Па, при скорости подачи силана 14,3 см3/мин с последующей термообработкой при температуре 1100°С в течение 15 с в среде аргона позволяет повысить процент выхода годных структур и улучшит их надежность. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления переходов с пониженными токами утечки. Технология способа состоит в следующем: на пластинах кремния с ориентацией (100), по стандартной технологии выращивают слой термического окисла 200 нм, формируют контакты, а после отжига при температуре 300°С в течение 9 минут проводят имплантацию ионов Ga с энергией 15 кэВ, дозой 4*1013-3*1015 см-2, при токе 300 нА. Затем структуру подвергают отжигу при температуре 700°С в течение 30 с в атмосфере азота. Технический результат: обеспечение возможности снижения токов утечек, повышения качества и параметров приборов, увеличения процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженными значениями токов утечек. Предложенный способ изготовления полупроводникового прибора путем формирования слоя подзатворного окисла со скоростью осаждения 1,2 нм/с при температуре 900°С в смеси силана и двуокиси углерода в соотношении 1:100 в потоке водорода 24 л/мин, с последующей термообработкой при температуре 830°С в течение 5 мин в инертной среде, позволяет повысить процент выхода годных приборов и улучшить их надежность. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженной плотностью дефектов. В способе изготовления полупроводникового прибора на GaAs подложке формируют слой нитрида алюминия AIN толщиной 55 нм, затем проводят имплантацию ионов кремния с энергией 60 кэВ, дозой (3-5)*1012 см-2. Температура в процессе имплантации не превышает 50°С. Полученные структуры отжигают при температуре 850°С в течение 15 мин в инертной среде. В последующем формируют активные области полевого транзистора и электроды к ним по стандартной технологии. Изобретение обеспечивает снижение плотности дефектов, повышение технологичности, улучшение параметров приборов, повышение качества и выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с повышенным значением крутизны характеристики. Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с удельным сопротивлением 10 Ом*см, ориентацией (100) пленка титаната висмута наносится методом ВЧ распыления. Распыление проводят в газовой смеси аргон-кислород при давлении 6*10-3 мм рт.ст. и температуре 675°С с последующей термообработкой при температуре 600°С в течение 35 с в среде аргона. Затем формируют области полевого транзистора и контакты к этим областям по стандартной технологии. Изобретение обеспечивает улучшение параметров приборов, повышение качества и процента выхода годных.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с высоким напряжением пробоя. Технология способа состоит в следующем: на пластинах кремния р-типа проводимости формируют скрытый n+ слой по стандартной технологии, затем последовательно наращивают эпитаксиальный слой р-типа проводимости толщиной 3,5 мкм с концентрацией легирующей примеси бора 1,0*1015 см-3, который служит продолжением подложки, затем формируют эпитаксиальный слой n-- типа проводимости толщиной 7,1 мкм с концентрацией легирующей примеси фосфора 1,0*1015 см-3 и верхний эпитаксиальный слой n- типа проводимости толщиной 4,4 мкм с концентрацией легирующей примеси фосфора 2,3*1015 см-3. Формирование пленки кремния на кремниевой подложке проводили со скоростью роста 20 нм/мин при температуре 750°С, давлении 1,33*10-5 Па и скорости подачи силана 14,3 см3/мин. Активные области транзистора и электроды к ним формировали по стандартной технологии. Изобретение обеспечивает повышение значений напряжения пробоя приборов, улучшение параметров и качества приборов, увеличение выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов. Технология способа состоит в следующем: на сапфировой подложке формируют слой нитрида алюминия толщиной 30-50 нм методом реактивного ионно-плазменного распыления с использованием мишени из алюминия в плазме особо чистого азота без добавления аргона, при давлении (3-5)10-3 мм рт.ст. и температуре подложки 200-250°С. Затем пиролитически осаждают слой кремния со скоростью роста пленки 15 нм/с при температуре 1000-1150°С при расходе водорода и силана соответственно 15 л/мин и 50 мл/мин. Изобретение обеспечивает снижение плотности дефектов, повышение технологичности, улучшение параметров структур, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактно-барьерной металлизации прибора. Технология способа состоит в следующем: на кремниевую подложку р-типа проводимости, ориентации (100), удельным сопротивлением 10 Ом*см с изолирующим слоем оксида кремния толщиной 0,35 мкм формируют последовательным нанесением пленки Со толщиной 25 нм методом термического испарения в вакууме 2*10-3 Па со скоростью осаждения 1 нм/с с последующим двухступенчатым отжигом: в начале при температуре 450°С в течение 30 мин в среде водорода, с образованием CoSi2, затем при температуре 910°С в течение 10 мин в среде аргона Ar. Поверх силицида CoSi2 формируют методом реактивного распыления барьерный слой TiN толщиной 35 нм в атмосфере (Ar+N2) и пленку Al (0,5% Cu) толщиной 0,8 мкм. В последующем проводят термообработку при температуре 300°С в течение 30 мин в среде водорода. Способ обеспечивает снижение значений токов утечек, улучшение параметров приборов, повышение технологичности и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления гетероструктур с низкой плотностью дефектов. Предложенный способ формирования гетероструктуры InAs на подложках GaAs путем подачи триэтилиндия и арсина при температуре подложки 600°С со скоростью потока арсина 15 мл/мин, со скоростью потока водорода через барботер и триэтилиндия 2,5 л/мин при скорости роста пленки 1 нм/с с последующим отжигом в течение 60 с в потоке азота при температуре 700°С позволяет повысит процент выхода годных структур и улучшит их надежность.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затворного слоя оксида кремния с низкой плотностью дефектов. Слой затворного оксида кремния формируют с применением пиролиза силана в присутствии двуокиси углерода в соотношении (1:100) в потоке водорода 24 л/мин, со скоростью роста 3-5 нм/с, при температуре 1100°С, с последующим отжигом в течение 3 мин в потоке азота при температуре 570°С. Технический результат: снижение плотности дефектов, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличения процента выхода годных.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления п+ скрытых слоев. Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с удельным сопротивлением 10 Ом*см, ориентации (111) формировали п+ скрытый слой имплантацией ионов мышьяка с энергией 150 кэВ, дозой (2-4) 1012 см-2 при температуре подложки 500-600°С, с последующей разгонкой при температуре 1200°С в атмосфере смеси 50% кислорода О2/50% азота N2 и термическим отжигом при температуре 1000°С в течение 20 мин в атмосфере водорода. В последующем формировали активные области транзистора и контакты по стандартной технологии. Техническим результатом изобретения является повышение значений коэффициента усиления, обеспечение технологичности, улучшение параметров, повышение качества и увеличения процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с пониженным контактным сопротивлением. Целью изобретения является снижение контактного сопротивления, обеспечение технологичности, улучшение параметров работы приборов, повышение качества и увеличение процента выхода годных. Сущность: силицидные контакты к элементам формируют на основе силицида палладия Pd2Si путем нанесения электронно-лучевым распылением пленки палладия толщиной 50 нм в вакууме 2,7⋅10-5 Па, со скоростью осаждения 0,5 нм/с, при температуре подложки 100°C с последующей термообработкой при температуре 250°C в течение 30 мин в инертной среде. Технический результат заключается в снижении контактного сопротивления, обеспечении технологичности, улучшении параметров структур, повышении качества и увеличении процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженной дефектностью. Технология способа состоит в следующем: на пластинах кремния p-типа проводимости с удельным сопротивлением 7,5 Ом*см выращивают слой термического окисла 0,6 мкм, на котором с применением пиролиза низкого давления формируют пленку поликристаллического кремния (ПК) 0,3 мкм. Затем проводят термообработку в течение 60 мин при температуре 1100°C в потоке азота для улучшения качества поверхности ПК, который влияет на результат последующего лазерного отжига. Для отжига используют аргоновый лазер непрерывного действия. Сканирование лучом лазера выполняют со скоростью 12 см/с. Образцы нагревают до температуры 350°C. Мощность лазера выбирают 10-12 Вт. После отжига формируют структуры полевого транзистора по стандартной технологии. Техническим результатом изобретения является снижение дефектности, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с пониженными токами утечек. Предложен способ изготовления полупроводникового прибора путем формирования слоя подзатворного оксида при температуре 1200°С в течение 14 мин в потоке осушенного кислорода в присутствии трихлорэтилена с последующим отжигом в течение 10 мин в потоке азота, что позволяет повысить процент выхода годных приборов и улучшить их надежность. Технический результат - снижение тока утечки, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления защитной изолирующей пленки с низкой дефектностью. Изобретение обеспечивает снижение значений тока утечки, повышение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. Способ изготовления полупроводникового прибора включает формирование на кремниевой подложке арсенид силикатного стекла со скоростью осаждения 5 нм/мин, окислением при подаче в реактор 1% силана SiH4 в потоке аргона 380 см3/мин, 1% AsH3 в потоке аргона 40 см3/мин и расходе кислорода O2 80 см3/мин при температуре 500°С с последующей термообработкой при температуре 1100°С в течение 5 часов в среде аргона.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженными токами утечек. Предложен способ изготовления полупроводникового прибора путем формирования на обратной стороне подложки пленки нитрида кремня толщиной 0,4 мкм ВЧ-катодным распылением со скоростью 10 нм/мин при температуре 300°С с последующей термообработкой в атмосфере азота с добавлением 1% кислорода при температуре 1000-1200°С в течение 1-4 ч. Технический результат: снижение токов утечек в полупроводниковых структурах, обеспечение технологичности, улучшение параметров, повышение качества и увеличение процента выхода годных приборов. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной дефектностью. Способ изготовления полупроводниковой структуры предусматривает проведение на обратной стороне пластины диффузии фосфора при 1100°С в течение часа с последующим нанесением на обратную сторону пластины пленок нитрида кремния толщиной 200 нм со скоростью 10 нм/мин с помощью ВЧ-катодного распыления при температуре 300°С и последующей термообработкой при температуре 1000-1200°С в течение часа в атмосфере азота с добавкой 1% кислорода. Технический результат: снижение дефектности, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии формирования подзатворного диэлектрика с пониженной дефектностью и с повышенной радиационной стойкостью. Перед осаждением кремниевые пластины обрабатывались смесью NH4OH и Н2О2 с рН=9, с последующим отжигом в водороде при 500°С. Пленки оксинитрида кремния толщиной 250-300 нм осаждались на кремниевую подложку в системе SiH4-NO-NH3 с азотом в качестве несущего газа, при концентрации NH3=1-7%. В подложку кремния силан вводился в виде 3% смеси с азотом, а NO - 4% в азоте. Аммиак смешивался с потоком силана в соотношении NH3/SiH4=35-40, скорость потока в реакционной камере составляла 1-3 л/мин с последующим отжигом при температуре 450-500°С в течение 5 минут. Технический результат: снижение токов утечек и повышение радиационной стойкости, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. 1 табл.

Изобретение относитья к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженными токами утечки. Технология способа состоит в следующем: исходным материалом служили подложки GaAs. Скрытый р+-слой формировали с помощью внедрения ионов бериллия Be в подложку GaAs в две стадии: первая стадия с энергией 150 кэВ, дозой 2*1015 см-2, вторая стадия с энергией 350 кэВ, дозой 3*1015 см-2 и с последующим отжигом при температуре 800°С в течение 20 мин в атмосфере водорода Н2. Для уменьшения паразитного сопротивления p-n-переходов ионное внедрение Be выполняли через двухслойную Mo-Au маску, закрывающую участки для формирования контактных площадок истока и стока. Затем наращивали активный n-слой и формировали на нем области стока, истока и канала полупроводникового прибора по стандартной технологии. Скрытый р+-слой выполняет функции затвора. Изобретение обеспечивает снижение токов утечки, повышение технологичности и процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления диэлектрической изоляции с низкими токами утечек. Технология способа состоит в следующем: на кремниевой подложке вытравливается канавка, затем на подложке формируется изолирующая пленка, состоящая из последовательно нанесенных слоев термического окисла и нитрида кремния Si3N4, и проводится легирование составного слоя ионами кислорода с энергией 50 кэВ, дозой 1*1016 см-2, с последующим термическим отжигом при температуре 970°C в течение 1 часа в атмосфере азота. Техническим результатом изобретения является снижение токов утечки, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной дефектностью. В способе изготовления полупроводниковой структуры подложку кремния с тыльной стороны подвергают обработке ионами Sb+ энергией 30 кэВ, дозой 3,5*1015 см-2 при температуре 300°С, с последующей термообработкой при температуре 800°C в течение 4-6 часов. Затем наращивают пленку кремния на кремниевой подложке и формируют полупроводниковые приборы по стандартной технологии. Обработка тыльной стороны подложки ионами сурьмы обеспечивает геттерирование дефектов, что повышает качество структур и процент выхода годных. 1 табл.

Изобретение относится к технологии изготовления фотопреобразователя с повышенным коэффициентом полезного действия (КПД). Предложен способ изготовления фотопреобразователя путем формирования в pin-структуре i-слоя на основе арсенида индия InGaAs между слоями GaAs и AlGaAs на подложках GaAs, при давлении 4⋅10-7-10-8 Па, температуре 600-800°С и скорости роста 2 Å/с. Изобретение обеспечивает повышение КПД преобразования, обеспечение технологичности, улучшение параметров, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной дефектностью. В способе изготовления полупроводниковой структуры выращивание эпитаксиального слоя кремния проводят в процессе водородного восстановления SiCl4, со скоростью 0,7 мкм/мин, при температуре 1200°С с последующим легированием Ge до концентрации 1020-1021 см-3. Изобретение обеспечивает снижение дефектности, повышение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных.

 


Наверх