Патенты автора Ашурбейли Руслан Игоревич (RU)

Изобретение относится к области стеклокерамики, в частности к высокотемпературным радиопрозрачным стеклокристаллическим материалам для СВЧ-техники, предназначенным для изготовления средств радиосопровождения в авиационно-космической и ракетной технике и производства изделий электронной техники, преимущественно фазовращателей, модулей управляемых решеток и т.д. Технический результат изобретения: упрощение и улучшение качества механической обработки поверхности материала за счет более мелкокристаллической структуры и увеличения количества остаточной стеклофазы. В стеклокристаллическом материале для СВЧ-техники, включающем SiO2, Al2O3, MgO, TiO2, CeO2, CeO2 применен в составе полирита в следующем соотношении, мас.%: SiO2 32,5-35,5; Al2O3 21,5-24,5; MgO 8,0-10,0; TiO2 16,5-19,5; полирит 14,5-17,5. Содержание CeO2 в полирите от 40 до 60%, а размеры частиц - 0,8-1,2 мкм. Стеклокристаллические материалы получены с заранее заданными и поддерживаемыми в определенных пределах значениями диэлектрической проницаемости при малых потерях (3,5-4,5)×10-4 в СВЧ-диапазоне (1010 Гц). 2 з.п. ф-лы, 3 табл.

Изобретение относится к технике СВЧ и может быть использовано для измерения уровня вносимых потерь, фазовых характеристик и коэффициента эллиптичности электромагнитной волны волноводных устройств. Устройство для измерения параметров электромагнитной волны содержит разделитель 1 поляризации, выполненный в виде двухканального поляризационного устройства с возможностью подключения входа к выходу измеряемого элемента 2, компьютер 3, векторный анализатор 4 электрических цепей, выполненный с возможностью подключения к компьютеру 3 и соединения выхода с входом измеряемого элемента 2, и направленный ответвитель 5. Технический результат заключается в увеличении количества одновременно измеряемых параметров электромагнитной волны до трех, упрощении конструкции устройства для измерения уровня вносимых потерь, фазовых характеристик и эллиптичности электромагнитной волны, сокращении времени измерения волноводных устройств, повышении точности измерений, обеспечении в устройстве оптимальных показателей массы и габаритов. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технике СВЧ и может быть использовано для измерения уровня вносимых потерь, фазовых характеристик и коэффициента эллиптичности электромагнитной волны волноводных устройств. Устройство содержит первый и второй измерители 1, 2 уровня сигнала электромагнитной волны, выполненные с возможностью подключения к соответствующим входам компьютера 3, разделитель 4 поляризации, соединенный первым выходом с входом первого измерителя 2 уровня сигнала электромагнитной волны и выполненный в виде двухканального устройства с возможностью подключения входа к выходу измеряемого элемента 5, векторный анализатор 6 электрических цепей и направленный ответвитель 7. Устройство измерения параметров электромагнитной волны позволяет осуществлять одновременно с помощью ПЭВМ амплитудные и фазовые измерения, а также измерение коэффициента эллиптичности, что дает возможность упростить процесс измерения параметров электромагнитной волны и конструкцию устройства в целом. Кроме того, в устройстве обеспечено улучшение в несколько раз показателей массы, габаритов и времени измерения за счет исключения коммутации каналов. Технический результат изобретения: упрощение конструкции устройства для измерения уровня вносимых потерь, фазовых характеристик и эллиптичности электромагнитной волны, сокращение времени измерения волноводных устройств, повышение точности измерений, обеспечение в устройстве оптимальных показателей массы и габаритов. 2 з.п. ф-лы, 1 ил.

Заявленное изобретение относится к ферритовым материалам с малыми диэлектрическими потерями и высокими значениями остаточной магнитной индукции и предназначено для использования в сверхвысокочастотных (СВЧ) системах, например в антенных элементах фазированных антенных решеток. Ферритовый материал получен из смеси порошков Fe2O3, Li2CO3, Bi2O3, ZnO, NiO, SnO2, Na2CO3, MnCO3, находящихся при следующем соотношении компонентов, масс.%: оксид железа 69,19±0,1, карбонат лития 4,93±0,1, карбонат натрия 0,78±0,03, оксид цинка 10,32±0,1, оксид никеля 1,58±0,05, оксид олова 3,18±0,05, карбонат марганца 9,72±0,1, оксид висмута 0,3±0,03. Повышение плотности структуры материала за счет уменьшения среднего размера зерна позволяет повысить прочность изделий и точность их механической обработки. Кроме того, предложенный материал обеспечивает повышение величины остаточной магнитной индукции и снижение диэлектрических потерь, что является техническим результатом заявленного изобретения. 1 табл.

Заявленное изобретение относится к ферритовым материалам с малыми диэлектрическими потерями и высокими значениями остаточной магнитной индукции, которые могут быть использованы в сверхвысокочастотных (СВЧ) системах, например в антенных элементах фазированных антенных решеток. Ферритовый материал получен из смеси порошков из Fe2O3, Li2CO3, Bi2O3, ZnO, NiO, Na2CO3, MnCO3 при следующем соотношении компонентов, мас.%: оксид железа 71,38±0,1, карбонат лития 4,17±0,05, карбонат натрия 0,79±0,03, оксид цинка 10,39±0,1, оксид никеля 3,18±0,05, карбонат марганца 9,79±0,1, оксид висмута 0,3±0,03. Снижение диэлектрических потерь и повышение значения остаточной магнитной индукции материала является техническим результатом изобретения. Кроме того, мелкозернистая структура ферритового материала позволяет повысить прочность изделий и точность их механической обработки. 1 табл.

Заявлен ферритовый материал с малыми диэлектрическими потерями и высокими значениями остаточной магнитной индукции. Ферритовый материал получен из смеси порошков, содержащей Fe2O3, Li2CO3, MnCO3, Bi2O3, ZnO, CdO, SnO2, TiO2 при следующем соотношении компонентов, мас.%: оксид железа 71,39±0,1, карбонат лития 5,61±0,1, оксид цинка 8,58±0,1, оксид кадмия 5,41±0,1, оксид олова 3,18±0,1, оксид титана 0,69±0,03, карбонат марганца 4,84±0,1, оксид висмута 0,3±0,03. Ферритовый материал получают по обычной керамической технологии. Снижение диэлектрических потерь и повышение значения остаточной индукции в заявленном материале является техническим результатом изобретения, что позволяет его использовать при изготовлении высокоэффективных СВЧ-элементов дальнодействующих антенн. 1 табл.

 


Наверх