Патенты автора Капитанов Владимир Валерьевич (RU)

Изобретение относится к способу управления беспилотным летательным аппаратом малого класса. Для управления беспилотным летательным аппаратом формируют импульсное модулированное вращающимся растром оптическое излучение с широкой диаграммой направленности, перемещающееся в пространстве, излучают его в направлении беспилотного летательного аппарата, регистрируют его матричным фотоприемником с изменяющейся диаграммой направленности, установленным на беспилотном летательном аппарате, вычисляют линейную скорость вращения растра и длительность модулированного оптического излучения, с использованием которых формируют команды управления беспилотным летательным аппаратом, передают команды управления на исполнительное устройство. Обеспечивается повышение эффективности управления беспилотным летательным аппаратом, повышение помехозащищенности и помехоустойчивости. 5 ил.

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Сущность способа поражения цели управляемым боеприпасом в сложной фоноцелевой обстановке заключается в определении пространственных координат района местоположения цели, использовании матрицы геоинформационных параметров изображения района местоположения цели и на ее основе формировании бинарной матрицы геоинформационных параметров изображения района местоположения цели с порогом бинаризации, исключающей из анализа изображения района местоположения цели участки, где цель по своим тактико-физическим свойствам находиться не может, внесении значений бинарной матрицы геоинформационных параметров изображения района местоположения цели в бортовой вычислитель управляемого боеприпаса, осуществлении запуска управляемого боеприпаса и выводе его в район местоположения цели, произведении с борта управляемого боеприпаса съемки участка района местоположения цели, формировании матрицы параметров кадра изображения участка района местоположения цели для j-го момента времени и передачи ее значений в бортовой вычислитель управляемого боеприпаса, где - номер текущего момента времени, N - количество моментов времени, на борту управляемого боеприпаса определении координат его местоположения для j-го момента времени и пространственных параметров съемки участка района местоположения цели для j-го момента времени, передачи их значений в бортовой вычислитель управляемого боеприпаса и формировании элемента бинарной матрицы геоинформационных параметров кадра изображения участка района местоположения для j-го момента времени, формировании матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени путем перемножения значений матрицы кадра изображения участка района местоположения цели для j-го момента времени и элемента бинарной матрицы геоинформационных параметров кадра изображения участка района местоположения цели для j-го момента времени, осуществлении обработки значений матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени и по ее результату выделении параметров цели и корректировке полета управляемого боеприпаса в цель, повторении процедур для j+1-го момента времени от формирования матрицы параметров кадра изображения участка района местоположения цели до осуществления обработки значений матрицы свертки параметров кадра изображения участка района местоположения цели для j+1-го момента времени и по ее результату выделении параметров цели и корректировки полета УБП на цель. 2 ил.

Изобретение относится к средствам обеспечения скрытности вооружения и военной техники (ВВТ) от оптико-электронных средств разведки. Оно может быть использовано для имитации вибрационных колебаний поверхности ложных целей и макетов ВВТ при их разведке лазерными локационными станциями, а также защиты от высокоточного оружия, оснащенного полуактивными лазерными головками самонаведения. Задачей предлагаемого изобретения является разработка устройства имитации вибрационных колебаний поверхности ложной цели, имитирующих работу двигателя реального образца ВВТ, и за счет этого повышение эффективности ложных целей или макетов ВВТ. Технический результат, на достижение которого направлено изобретение, заключается в повышении вероятности принятия ложной цели за имитируемое ВВТ. Указанный результат достигается тем, что в устройство имитации вибрирующих объектов, состоящее из блока управления вибрацией, последовательно соединенного с вибромотором, дополнительно введены: сферическое зеркало, подвижная в двух плоскостях пластина, прозрачный защитный обтекатель, к основанию которого с помощью опор с пружинами закреплена подвижная в двух плоскостях пластина, на которой закреплены вибромотор и сферическое зеркало. 1 ил.

Изобретение может быть использовано в системах лазерной локации для определения местонахождения объектов в пространстве. Сущность изобретения заключается в осуществлении пространственной обработки двух последовательно получаемых матричным фотоприемным устройством изображений принятых отраженных излучений, имеющих общую перекрываемую область. В приемо-передающем модуле лазерного локационного средства используют матричное фотоприемное устройство, с помощью которого формируют изображения принятых оптических излучений. Далее сравнивают параметры двух последовательно формируемых изображений и определяют пространственные параметры области равных параметров двух последовательно формируемых изображений. По значениям пространственных параметров области равных параметров двух последовательно формируемых изображений вычисляют угловые координаты смещения ориентации луча лазерного локационного средства (ЛЛС) относительно угловых координат ориентации лазерного локационного средства, полученных при формировании первого из двух последовательно формируемых изображений по угловым координатам ориентации передающего модуля ЛЛС, формирующего оптическое излучение. Определяют угловые параметры ориентации луча лазерного локационного средства, как сумму угловых параметров ориентации луча лазерного локационного средства, полученных при формировании первого из двух последовательно формируемых изображений и угловых параметров смещения ориентации луча лазерного локационного средства. Техническим результатом является повышение эффективности определения положения лазерного луча в пространстве. 2 ил.

Способ повышения разрешения изображения заключается в приеме оптического излучения матричным фотоприемником (МФПУ), измерении и запоминании параметров выходных сигналов фоточувствительных элементов (ФЧЭ) МФПУ и формировании по их значениям изображения. При этом одновременно по всем ФЧЭ МФПУ последовательно закрывают участки фоточувствительной поверхности каждого ФЧЭ МФПУ и измеряют параметры выходного сигнала каждого ФЧЭ МФПУ. Значения параметров выходного сигнала, соответствующих закрытому участку, определяют путем вычитания значений параметров выходного сигнала, полученных при его закрытии, из запомненных значений параметров выходного сигнала в открытом состоянии. Технический результат заключается в повышении разрешающей способности оптико-электронных средств, формирующих изображение объектов. 2 ил.

Изобретение относится к области оптических измерений и касается способа определения угловых координат на источник направленного оптического излучения. Способ включает в себя привязку положения фоточувствительных элементов матричного фотоприемника оптико-электронного координатора к декартовой системе координат, прием излучения, выделение не менее шести фотоэлементов матричного фотоприемника, сигналы на выходе которых равны между собой, определение их координат и вычисление по их значениям угла места и азимута источника излучения. Кроме того, при проведении измерений определяют суммарный сигнал S1 выделенных шести фотоэлементов, осуществляют наклон плоскости матричного фотоприемника по углу места в направлении его увеличения, повторно определяют суммарный сигнал S2 выделенных шести фотоэлементов и сравнивают полученные значения сигналов S1 и S2. Если S1>S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 0° до 90°. Если S1<S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 90° до 180°. Технический результат заключается в снятии ограничений на неоднозначность определения угла места. 2 ил.

Способ защиты вертолета от управляемых боеприпасов заключается в поиске с борта вертолета оптического излучения управляемого боеприпаса (УБП), включает отстрел аэрозолеобразующего боеприпаса в направлении полета вертолета и формирование на установленной дистанции аэрозольного облака, подсвечивание его лазерным излучением в диапазоне частот инфракрасного спектра, соответствующих вертолету, определение по оптическому излучению функционирования составных элементов УБП параметров его траектории полета, определение по их значениям величины промаха УБП относительно вертолета и сравнение ее значения с заданным. Если определенная величина промаха меньше заданной, включают бортовые средства противодействия УБП. Технический результат заключается в повышении эффективности защиты вертолета от управляемых боеприпасов. 1 ил.

Способ однопозиционного определения угловых координат заключается в применении в качестве фотоприемного устройства матричного фотоприемника, осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина. В результате суперпозиции сигнальной волны и волны гетеродина на поверхности МФП формируется изображение в виде интерференционных полос. По ширине интерференционных полос и угла их наклона определяют угловые координаты источника лазерного излучения. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности определения направления на источник лазерного излучения. 2 ил.

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат - сокращение времени определения принадлежности местоположения ИРИ к ограниченной области пространства. Сущность способа заключается в реализации синхронного по пространству и времени пеленгования ИРИ с последующей корреляционной обработкой потока сигналов от каждого из пеленгаторов для выявления сигналов тех ИРИ, координаты которых принадлежат априорно заданной «просматриваемой» области пространства. Пространственно-временная синхронизация реализуется путем одновременного формирования диаграмм направленности пеленгаторов, направление максимума которых ориентированоы на геометрический центр просматриваемого элемента области пространственного мониторинга ИРИ. 2 ил.

 


Наверх