Патенты автора Бриллиант Леонид Самуилович (RU)

Изобретение относится к нефтедобывающей промышленности и может быть использовано как способ отбора жидких углеводородов и закачки вытесняющих агентов, например воды, углекислого газа, водогазовых смесей, теплоносителей и др., при организации гидродинамического воздействии на пласт с целью достижения максимального эффекта от изменения кинематики потоков в системе скважин. Технический результат заключается в эффективной организации системы поддержания пластового давления (ППД) и повышении нефтеотдачи пласта (КИН). Способ включает отбор воды и жидких углеводородов через добывающие скважины и закачку рабочего агента через нагнетательные скважины, регистрацию промысловых данных по работе каждой скважины, на основе которых методами машинного обучения воспроизводятся исторические замеры добычи воды и углеводородов, в процессе многовариантных расчетов подбирают оптимальные режимы закачки вытесняющего флюида и режимы работы добывающих скважин, обеспечивающие наибольшую накопленную добычу углеводородов, оптимальные режимы закладывают в трехмерный гидродинамический симулятор, в котором проводится прогнозный расчет и выдаются окончательные команды для управления скважинами в ручном либо автоматическом режиме. При этом для окончательного задания оптимальных режимов работы скважин используют объединение нейронной сети и геолого-гидродинамической модели, позволяющее сформировать оптимальные значения приемистостей и дебитов жидкости для регулирования перераспределения закачки воды, на основе геолого-гидродинамической модели и заданных оптимальных приемистостей и дебитов жидкости рассчитывается прогнозная добыча нефти и дополнительно добытая нефть за счет применения гидродинамических методов увеличения нефтеотдачи пласта. 4 табл., 8 ил.

Изобретение относится к прогнозированию и управлению дебитом жидкости по скважинам нефтяного месторождения. Для осуществления способа управления работой нагнетательных и добывающих скважин нефтяного месторождения, основанного на устройстве управления, имеющем искусственную нейронную сеть с циклической связью, создают прогноз дебита жидкости во времени. Для создания прогноза, при переходе на следующий расчетный временной шаг результаты расчета, полученные на выходном нейроне за предыдущий временной шаг, подают на входной слой нейронов текущего шага. После обучения нейронной сети решают оптимизационную задачу по определению оптимальной приемистости нагнетательных скважин и дебита жидкости добывающих, обеспечивающей увеличение дебита нефти. Полученные значения дебитов жидкости и приемистостей устанавливают на скважинах автоматически или вручную. Устройство управления режимами работы скважин на основе нейронной сети содержит многослойную циклическую нейронную сеть, включающую: первый входной слой, количество нейронов которого равняется количеству входных данных. Несколько скрытых слоев, общее количество которых и количество содержащихся на них нейронов подбирается экспериментально. Третий выходной слой, содержащий один нейрон, отвечающий за предсказание дебита жидкости на текущем временном шаге. Для учета временных эффектов дополнительно введена циклическая связь между выходным нейроном, отвечающим за дебит жидкости на предыдущем временном шаге, и входным нейроном на текущем временном шаге. Достигается технический результат – повышение точности прогноза, возможность предсказания изменения дебита жидкости во времени, подбор оптимальных режимов работы добывающих и нагнетательных скважин, обеспечивающих повышение добычи нефти. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к оперативной оценке текущего поля нефтенасыщенности на основе промысловых данных. Технический результат - выявление зон локализации остаточных запасов нефти путем восстановления поля текущей нефтенасыщенности и определения зон ее максимальных значений для эффективного доизвлечения остаточных запасов нефти. По способу в процессе бурения скважин проводят геофизические исследования. По их результатам определяют фильтрационно-емкостные свойства пласта. Из скважин отбирают керн, на котором проводят исследования для определения остаточной нефте- и водонасыщенности пласта. Проводят промыслово-геофизические исследования, по результатам которых определяют работающие интервалы перфорации скважины. По всем добывающим скважинам определяют динамику дебита жидкости и обводненности. Определяют параметр, характеризующий скорость обводнения скважины, на основании которого определяют коэффициент заводнения при прорыве воды к добывающим скважинам. После этого определяют значение текущей насыщенности нефтью в работающих интервалах перфорации скважины с учетом накопленной добычи жидкости, текущей доли нефти в продукции скважины, в том числе с распределением текущей насыщенности нефтью по пропласткам в скважине на основе проницаемости и толщины пропластков. Осуществляют восстановление поля текущей нефтенасыщенности по площади разрабатываемого участка путем интерполяции между парами соседних скважин: добывающая - добывающая, добывающая – нагнетательная, нагнетательная - нагнетательная, а также между скважинами и контуром нефтеносности. 2 табл., 5 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к управлению заводнением нефтяных пластов. Способ включает отбор нефти через добывающие скважины и закачку рабочего агента через нагнетательные скважины, при этом для определения оптимальных значений приемистостей нагнетательных скважин и дебита жидкости добывающих скважин используют математическую модель месторождения, в которой в качестве первоначальных данных для каждой добывающей скважины и потенциально влияющих на нее нагнетательных скважин принимают показатели в виде даты замера, значения приемистости, дебита жидкости и доли нефти в добываемой продукции, давления на забое нагнетательной и добывающей скважины, динамического уровня жидкости в затрубном пространстве добывающей скважины. В качестве математической модели используют объединенный с искусственной нейронной сетью объемно-резистивный метод CRM (Capacitance-Resistive Models), позволяющий получить зависимость дебита жидкости, забойного давления, динамического уровня и доли нефти добывающих скважин от текущего значения приемистости нагнетательных скважин, при этом производят адаптацию математической модели путем получения минимального расхождения фактических и расчетных данных дебита жидкости, доли нефти, забойного давления и динамического уровня каждой работающей добывающей скважины, при помощи нейронной сети определяют значения коэффициентов гидродинамического сопротивления между скважинами в модели CRM, восстанавливают поле насыщенности нефтью пласта и получают функциональную зависимость суточной добычи жидкости и нефти добывающей скважины в зависимости от приемистостей окружающих ее нагнетательных скважин и добычи жидкости окружающих ее добывающих скважин, затем производят максимизацию суммарной добычи нефти по месторождению в целом путем перераспределения приемистости нагнетательных скважин и регулирования отборов жидкости добывающих скважин с наложением ограничений на объемы закачки для эффективной организации системы вытеснения нефти водой и поддержания пластового давления. Технический результат заключается в обеспечении эффективной организации системы вытеснения нефти водой и системы поддержания пластового давления. 5 ил., 2 табл.

Изобретение относится к нефтедобывающей промышленности, а именно к управлению заводнением нефтяных пластов. Способ включает отбор нефти через добывающие скважины и закачку рабочего агента через нагнетательные скважины, оценку влияния добывающих и нагнетательных скважин. При этом для определения оптимальных значений приемистости нагнетательных скважин используют математическую модель месторождения, а в качестве первоначальных данных для каждой добывающей скважины и потенциально влияющих на нее нагнетательных скважин принимают показатели в виде даты замера, значение приемистости, дебита жидкости и доли нефти. В качестве математической модели используют функции, отражающие изменение дебита жидкости и доли нефти добывающих скважин при изменении приемистости нагнетательных скважин, при этом производят адаптацию математической модели путем получения минимального расхождения фактических и расчетных данных дебита жидкости и доли нефти каждой работы добывающей скважины. Определяют оптимальные значения настроечных параметров функций дебита жидкости и доли нефти, и составляют смешанную функцию суточной добычи нефти добывающей скважины в зависимости от приемистости окружающих ее нагнетательных скважин. Затем производят максимизацию суммарной добычи нефти по месторождению в целом путем перераспределения приемистости нагнетательных скважин, с наложением ограничений на объемы закачки для эффективной организации системы вытеснения нефти водой и поддержания пластового давления. Технический результат заключается в обеспечении эффективной организации системы вытеснения нефти водой и системы поддержания пластового давления. 4 ил., 11 табл.

Изобретение относится к области нефтегазодобывающей промышленности, а именно к проблеме повышения эффективности разработки нефтяных оторочек и подгазовых зон газонефтяных, нефтегазовых и нефтегазоконденсатных залежей, с предшествовавшим периодом добычи газа из газовой или газоконденсатной шапки или без такового. Технический результат - повышение эффективности извлечения продукции скважин. По способу отбирают пробы нефти и/или газа. Определяют компонентный состав отобранных проб и значение критического давления, при котором происходит испарение нефти в газ. Затем для рассматриваемой залежи создают трехмерную геологическую и многокомпонентную фильтрационную модель продуктивного пласта. На основе ее размещают добывающие и газо-нагнетательные скважины. Проводку их осуществляют в зависимости от водонефтяного контакта и газонефтяного контакта. При этом нефтяную оторочку между уровнями водонефтяного и газонефтяного контактов разбуривают нагнетательными скважинами. В них закачивают сухой газ. Закачивание сухого газа осуществляют с забойным давлением, превышающим критическое давление испарения нефти, определенное по результатам эксперимента. Газонасыщенную зону выше уровня газонефтяного контакта разбуривают добывающими скважинами. Через них добывают испаренную нефть совместно с газом и конденсатом. 4 пр., 2 табл., 2 ил.

Изобретение относится к нефтедобывающей промышленности и направлено на уменьшение остаточной нефтенасыщенности при разработке залежей нефти, приуроченных к рифовым резервуарам. Технический результат - повышение коэффициента нефтеотдачи. Способ предусматривает отбор пластового флюида через добывающие скважины и закачку рабочего агента через нагнетательные скважины в циклическом режиме. Для этого добывающие скважины располагают в верхней прикровельной части залежи. Нагнетательные скважины располагают в подошвенной части залежи. Чередование периодов отбора пластового флюида и закачки рабочего агента осуществляют с временным разделением. Период закачки предусматривает остановку добывающих скважин. Период добычи предусматривает остановку нагнетательных скважин. Продолжительность циклов определяют исходя из расчета материального баланса, учитывающего изменение - уменьшение порового объема при восстановлении пластового давления и темп изменения порового объема. При заданных величинах отборов и закачки пластовое давление не снижают ниже граничного. Нагнетание рабочего агента осуществляют в подошвенную часть разреза. После закачки рабочего агента осуществляют капиллярно-гравитационную пропитку. Затем при запуске добывающих скважин осуществляют отбор пластового флюида. 7 ил.

Изобретение относится к нефтедобывающей промышленности и направлено на создание системы автоматического контроля и управления заводнением нефтяных пластов на основе оценки взаимного влияния скважин. Технический результат - повышение эффективности поддержания пластового давления. По способу осуществляют отбор нефти через добывающие скважины и закачку рабочего агента через нагнетательные скважины. Для оценки влияния добывающих и нагнетательных скважин осуществляют преобразование первоначальных промысловых данных добывающих и нагнетательных скважин с помощью системы базисных функций. В качестве первоначальных данных для каждой нагнетательной и потенциально реагирующих добывающих скважин принимают показатели в виде даты замера, значение приемистости, дебита жидкости, обводненности, состояние скважины - в работе или бездействии. В качестве базисных функций используют сглаживающие функции, обеспечивающие возможность линейного или экспоненциального сглаживания, такие как «скользящее окно», или вейвлет-анализ, или нейронные сети. С помощью базисных функций выделяют тренд промысловых показателей скважин, полезную составляющую динамики работы скважин и устраняют «шумы». Затем определяют коэффициенты влияния на основе сравнения преобразованных промысловых данных. Преобразованную динамику работы всех выбранных скважин для каждой базисной функции разбивают на фрагменты, соответствующие росту и падению базисной функции. Если на протяжении одного фрагмента отмечают смену режима работы, то фрагмент автоматически разбивают на два новых фрагмента. Рассчитывают коэффициент корреляции для каждой базисной функции между фрагментами динамики нагнетательной и реагирующей добывающей скважинами с учетом времени, через которое добывающая скважина реагирует на изменение режима работы нагнетательной скважины. По значению, к которому стремится зависимость коэффициента корреляции от количества проанализированных фрагментов, определяют полезность скважин. С учетом взаимного влияния скважин формируют рекомендации по перераспределению закачки для эффективной организации системы вытеснения нефти водой и поддержания пластового давления. 6 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к месторождениям легких нефтей (высокое газосодержание и давление насыщения нефти газом, близкое или равное начальному пластовому давлению), и направлено на повышение продуктивности скважин путем увеличения подвижности нефти за счет растворения в породе выделившегося из нефти газа при восстановлении пластового давления. Способ повышения подвижности нефти залежи применяется к залежам, разрабатываемым добывающими и нагнетательными скважинами. При осуществлении способа переводят добывающие скважины на другие залежи, консервируют добывающие скважины на период «подкачки» и «релаксации» залежи, ликвидируют добывающие скважины, при этом осуществляют постоянный контроль за величиной газового фактора и обводненностью. Данные действия позволяют ускорить процесс восстановления пластового давления за отсутствием отборов, понижающих пластовое давление. Остановленные добывающие скважины вводят в эксплуатацию по мере восстановления пластового давления залежи до уровня, перекрывающего величину гистерезиса обратного растворения газа по давлению, при этом осуществляют периодический запуск скважин для оперативного контроля над продуктивностью, обводненностью и величиной газового фактора. После чего бурят проектные добывающие скважины. 2 ил.

 


Наверх