Патенты автора Макаров Кирилл Владимирович (RU)

Лазерный толщиномер дополнительно снабжен калибровочным приспособлением. Калибровочное приспособление жестко зафиксировано штифтованным винтовым соединением на корпусе толщиномера, обеспечивающим перпендикулярность пучков лазерного излучения к плоскости положения эталона, и содержит плату управления, линейный шаговый двигатель для перемещения эталона tetj, зафиксированного в зоне измерения на общем основании с фотоэлектрическими модулями. При калибровке эталон - tetj дискретно перемещают к другой границе зоны измерения и для каждого положения эталона tetj, 1<i<N, где N - число измерений, фиксируют соответствующие этому положению номера элементов n1i., n2i на линейных многоэлементных фотоприемниках. Приведенная последовательность операций повторяется для всех эталонов 1<j<М. Для определения калибровочных коэффициентов k1, k2, g1, g2, C применяют метод наименьших квадратов, который минимизирует ошибку измерения текущей толщины ti относительно толщины эталона tetj. Технический результат – уменьшение погрешности измерений. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к калибровке лазерных толщиномеров, построенных по методу лазерной триангуляции, при котором пучки излучения направлены с двух сторон перпендикулярно к контролируемой поверхности, а принятый оптический сигнал фиксируется многоэлементным приемником. Лазерный толщиномер дополнительно снабжен калибровочным приспособлением. Калибровочное приспособление жестко зафиксировано штифтованным винтовым соединением на корпусе толщиномера, обеспечивающим перпендикулярность пучков лазерного излучения к плоскости положения эталона, и содержит плату управления, линейный шаговый двигатель для перемещения эталона tet, зафиксированного в зоне измерения на общем основании с фотоэлектрическими модулями. При калибровке эталон - tet дискретно перемещают к другой границе зоны измерения и для каждого положения эталона tet измеряют расстояния R1i, R2i от фотоэлектрических модулей до каждой стороны эталона tet. Определяют соответствующие этим расстояниям номера элементов n1i, n2i на многоэлементных фотоприемниках, а затем определяют угловые коэффициенты k1, k2 и смещения b1, b2, калибровочных прямых для каждого фотоэлектрического модуля, применяя метод наименьших квадратов. Технический результат - повышение точности измерения при воздействии вибрации, изменении температуры окружающей среды, волнистости и изогнутости объектов. 2 н. и 2 з.п. ф-лы, 5 ил.

 


Наверх