Патенты автора Балашов Виктор Владимирович (RU)

Изобретение относится к системам газоснабжения газоразрядных узлов ионных источников и может быть использовано для газоразрядных источников ионов, применяемых в электроракетных ионных двигателях, технологических изделиях, обрабатывающих материалы в вакууме, и космических ионных источниках, взаимодействующих с объектами космического мусора. Технический результат – упрощение конструкции, возможность повысить номиналы рабочего напряжения ионного источника за счет длины канала прохождения газа, образованного спиральной выточкой в третьем изоляторе при его герметичном по внешней поверхности соединении со вторым изолятором. Газоэлектрическая развязка газоразрядного узла ионного источника содержит соединенные между собой изоляторы с каналами прохода рабочего тела, размещенные в разрыве тракта подачи рабочего тела. Первый по ходу подвода газообразного рабочего тела изолятор выполнен в виде керамической накидной гайки, соединенной герметично со штуцером системы подачи газа через уплотнение. Второй изолятор выполнен в виде полого цилиндра с резьбой на внешней поверхности, предназначенной для соединения с первым изолятором. В полости второго канала герметично установлен третий изолятор, выполненный в виде стержня со спиралевидной выточкой по внешней поверхности. Способ изготовления заключается в получении элементов газоэлектрической развязки газоразрядного узла ионного источника из диэлектрических материалов. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к методам изготовления элементов ионно-оптических систем электроракетных двигателей и источников ионов различного назначения, которые, в частности, могут использоваться в составе технологических ионно-плазменных установок. Способ включает послойную укладку углеродных волокон или углеволоконной ткани на рабочую поверхность формообразующего элемента. На основании (1) формообразующего элемента расположены выступы (2) в форме цилиндров с вершинами конической формы. Форма и размеры выступов (2) соответствуют форме и размерам выполняемых в электроде отверстий. Формообразующий элемент изготавливают методом лазерной стереолитографии. В качестве материала элемента используют фотополимеризующийся композиционный материал. На сплетенные углеродные волокна наносят связующее вещество и проводят предварительную термообработку заготовки. Термообработка включает ступенчатое увеличение температуры, повышение давления, действующего на заготовку, охлаждение заготовки и снижение давления до уровня давления окружающей среды. Формообразующий элемент удаляют после завершения предварительной термообработки путем его нагрева до температуры, превышающей температуру плавления материала. В результате выжигания формообразующего элемента в заготовке электрода образуются отверстия заданной формы. Затем осуществляют термическое разложение связующего вещества в перфорированной заготовке до образования углерод-углеродного композиционного материала. Технический результат - повышение качества электродов за счет исключения остаточных деформаций, повышение точности изготовления отверстий в электродах и обеспечение возможности изготовления перфорированных электродов со сложной конфигурацией каналов отверстий. 10 з.п. ф-лы, 4 ил.

 


Наверх