Патенты автора Бабкин Владимир Иванович (RU)

Изобретение относится к аэрокосмическим двигателям. Детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, систему непрерывной подачи топлива, решеточный пластинчатый гаситель детонационных волн, расположенный так, что в него поступает хорошо перемешанная горючая смесь, камеру сгорания и выхлопное сопло. Сверхзвуковой воздухозаборник тормозит набегающий высокоскоростной сверхзвуковой поток воздуха до чисел Маха М=3-4. Решеточный пластинчатый гаситель содержит одну или более пластин, расположенных вдоль оси проточного тракта двигателя. Поперечный размер каждого канала, образованного пластинами гасителя, меньше, чем поперечный размер ячеек образующейся при горении детонационной волны, движущейся против потока и набегающей на тот же гаситель, что останавливает и гасит распространение детонационной волны при попадании в узкие каналы гасителя, а ударные волны, возникающие при погасании детонационной волны, сверхзвуковым потоком выносит из каналов в камеру сгорания, препятствуя разрушению ими течения набегающего потока и ограничивая движение детонационных и ударных волн частью гасителя и камерой сгорания, обеспечивая переход горения дефлаграции в детонацию, в результате чего организуется непрерывное нестационарное горение в динамически пульсирующих (возникающих и гаснущих) детонационных волнах и фронтах медленного горения. Технический результат - увеличение тяги и расширение диапазона скоростей полета до чисел Маха М=5-8 при уменьшении теплонапряженности тракта двигателя по сравнению с прямоточным воздушно-реактивным двигателем и прямоточным воздушно-реактивным двигателем со сверхзвуковым горением. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло. Функционирование двигателя в режиме сверхзвукового горения включает неполное торможение воздушного потока в воздухозаборнике, газификацию твердого горючего в газогенераторе, разложение продуктов газификации в охлаждающем тракте, смешение воздуха и продуктов разложения, воспламенение и сжигание смеси в камере дожигания, расширение продуктов сгорания в сопле. Также представлен способ функционирования прямоточного воздушно-реактивного двигателя на твердом горючем. Изобретение позволяет улучшить массогабаритные характеристики, повысить энергоемкость при быстром и полном сгорании горючего, а также обеспечить надежную защиту и охлаждение стенок камеры дожигания. 2 н. и 16 з. п. ф-лы, 4 ил.

Способ организации детонационно-дефлаграционного горения в воздушно-реактивном двигателе для высоких скоростей полета заключается в том, что набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника, по мере продвижения, в зоне образования скорости, меньшей, чем скорость детонационной волны, возникающей при горении, но большей, чем скорость ударной волны, возникающей при гашении детонационной волны. Через топливные сопла непрерывно подают топливо, смешивают его с воздухом и создают непрерывный поток горючей смеси, имеющей зону недостаточного смешения в зоне топливных сопел и зону хорошо перемешанной горючей смеси, расположенную ниже по течению потока. Воспламеняют хорошо перемешанную горючую смесь. Образующуюся при этом детонационную волну, движущуюся против потока, гасят в зоне недостаточного смешения с образованием ударной волны и очагов дефлаграционного горения, сносимых потоком вниз по течению. Воспламеняют хорошо перемешанную горючую смесь указанными очагами дефлаграционного горения, и инициируют новую детонационную волну, распространяющуюся против потока, реализуя тем самым переход от дефлаграционного горения к детонационному. В результате обеспечивается процесс детонационно-дефлаграционного горения с частотой пульсаций, определяемой скоростями детонационной волны и сверхзвукового потока. Изобретение направлено на упрощение конструкции и функционирование пульсаций детонационной волны без механических или газодинамических клапанов при непрерывной подаче топлива. 2 н.п. ф-лы, 2 ил.

Изобретение может быть использовано в космической и оборонной отрасли. Способ воспламенения топливной смеси заключается в том, что в камеру сгорания двигателя подают высокоскоростной поток воздуха, обеспечивают торможение потока, образуют в камере сгорания топливную смесь и воспламеняют ее. Так же обеспечивают торможение потока топливной смеси. Торможение осуществляют до дозвуковых чисел Маха посредством сужения камеры сгорания. Воспламенение топливной смеси осуществляют за счет обеспечения времени пребывания топливной смеси в камере сгорания больше времени индукции в реакции окисления горючего. Время пребывания топливной смеси в камере сгорания задают согласно защищаемых изобретением соотношений. Сужение камеры сгорания обеспечивают постепенным или местным уменьшением площади ее поперечного сечения. Изобретение направлено на упрощение процесса воспламенения топливовоздушной смеси при одновременном повышении надежности воспламенения, увеличении полноты сгорания топлива. 2 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в космической и оборонной отрасли. Высокоскоростной прямоточный воздушно-реактивный двигатель (ПВРД) содержит последовательно расположенные воздухозаборное устройство, камеру сгорания (КС) и выходное сопло. В КС размещены форсунки подачи горючего с возможностью образования топливовоздушной смеси. Площадь входного сечения камеры сгорания выполнена больше площади ее выходного сечения, при этом площадь выходного сечения камеры сгорания определяется с учетом температуры воспламенения топливовоздушной смеси. Геометрические параметры КС определяются с учетом приведенных в тексте описания соотношений. Превышение площади входного сечения КС над площадью ее выходного сечения может быть обеспечено образованием местного сужения в зоне последнего или постепенным сужением КС по потоку. Технический результат заключается в повышении надежности и эффективности воспламенения, увеличении полноты и стабильности сгорания топлива, а также увеличении тяги и экономичности двигателя, надежности его запуска и снижении стоимости изготовления двигателя за счет кардинального упрощения конструкции и технологии изготовления. 5 з.п. ф-лы, 2 ил.

 


Наверх