Патенты автора Хрячков Виталий Алексеевич (RU)

Изобретение относится к средству диагностирования стабильности работы устройства с коронным счетчиком для измерения нейтронных потоков в присутствии интенсивного гамма-излучения. В заявленном способе до начала измерений размещают коронный счётчик вне зоны объекта измерения и при различных уровнях мощности поглощённой дозы гамма-излучения регистрируют ток коронного счетчика при его работе в режиме коронного разряда, ток коронного счетчика при его работе в режиме ионизационной камеры и скорость счета импульсов коронного счетчика при его работе в режиме коронного разряда при нулевом значении порога дискриминации импульсов. Далее необходимо регистрировать при проведении измерений коронным счетчиком в зоне объекта измерения скорость счета импульсов коронного счетчика при его работе в режиме коронного разряда при нулевом значении порога дискриминации и токи коронного счетчика при его работе в режимах коронного разряда и ионизационной камеры. Далее проводят обработку и анализ полученных данных. Техническим результатом является повышение эффективности диагностики стабильности работы устройства с коронным счетчиком для измерения нейтронных потоков за счет исключения методической погрешности измерений. 1 з.п. ф-лы,5 ил., 1 пр.

Способ и устройство предназначены для определения наличия отложений в полости линейного участка трубы постоянного проходного сечения при прокачке кислородосодержащего потока. Способ включает облучение кислородосодержащего потока. Создают радиоактивную метку в кислородосодержащем потоке облучением быстрыми нейтронами в импульсном режиме. Регистрируют гамма-кванты. Анализируют спектр на наличие энергетического пика гамма-квантов с энергией 6,13±0,62 МэВ от кислорода. Определяют время переноса метки как разницу моментов начала облучения и начала регистрации гамма-квантов от кислорода метки. Измеряют время переноса на последовательно расположенных равных по длине частях исследуемого участка трубы. Определяют наличие отложений на участке, соответствующем минимальному времени переноса метки. Устройство включает импульсный источник быстрых нейтронов 2, блок детектирования гамма-квантов 1, комплекс анализа данных 4 и источники электропитания 3. Импульсный источник быстрых нейтронов 2 расположен вне трубы 6. Блок детектирования гамма-квантов 1 расположен вне трубы 6 и подключен к комплексу анализа данных 4. Блок детектирования гамма-квантов 1, импульсный источник быстрых нейтронов 2 и комплекс анализа данных 4 подключены к источникам электропитания 3. Технический результат - повышение эксплуатационных характеристик устройства, а именно обеспечение обнаружения мест отложений без остановки эксплуатации трубы и без снятия изоляции с нее. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники. Способ определения массы силикатных отложений на единицу длины канала включает в себя этапы, на которых осуществляют облучение силикатных отложений нейтронами, регистрацию гамма-квантов, при этом облучение проводят быстрыми нейтронами, регистрацию гамма-квантов проводят после облучения, анализируют спектр гамма-квантов на наличие энергетического пика 1,78±0,18 МэВ от кремния, определяют массу силикатного отложения на единицу длины канала по количеству гамма-квантов указанной энергии в соответствии с градуировочной зависимостью. Технический результат - расширение области применения технического решения для определения массы силикатов. 1 ил.

Изобретение относится к области измерительной техники. Способ определения границ раздела сред в сепараторах сырой нефти включает облучение сепаратора с отстоявшимся скважинным флюидом, регистрацию гамма-квантов и анализ полученных спектров гамма-квантов. Производят пошаговое перемещение сверху вниз вдоль сепаратора лежащей в горизонтальной плоскости сканирующей системы. Система состоит из источника быстрых нейтронов, блока детектирования гамма-квантов и блока детектирования тепловых нейтронов. При фиксированном положении системы облучают сепаратор быстрыми нейтронами. Регистрируют гамма-кванты и тепловые нейтроны. Анализируют спектр гамма-квантов на наличие двух энергетических пиков 6,13±0,62 МэВ от кислорода и 1,78±0,18 МэВ от кремния. Повторяют процедуру в следующем положении сканирующей системы. Делают заключение о наличии границы газ-нефть по факту регистрации тепловых нейтронов. Заключение о наличии границы нефть-вода делают по факту дополнительного обнаружения гамма-квантов от кислорода. Заключение о наличии границы вода-битумы с песком делают по факту обнаружения гамма-квантов от кремния дополнительно к уже перечисленным. Технический результат - расширение диапазона концентраций газа при определении границ раздела сред в сепараторах сырой нефти. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области измерительной техники. Способ определения массы кислорода в кислородосодержащем потоке включает облучение кислородосодержащего потока и регистрацию гамма-квантов. Облучают быстрыми нейтронами в импульсном режиме Кислородосодержащий поток, регистрируют гамма-кванты, проводят анализ полученных спектров зарегистрированных гамма-квантов, определяют количество гамма-квантов с энергией 6,13±0,62 МэВ от облученного объема. Определяют время переноса облученного объема как разницу моментов начала регистрации гамма-квантов и момента начала облучения кислородосодержащего потока. Массу кислорода рассчитывают по соотношению с учетом числа зарегистрированных гамма-квантов с энергией 6,13±0,62 МэВ, постоянной распада для азота-16, времени переноса облученного объема от источника к детектору, эффективности регистрации детектора, плотности потока быстрых нейтронов, частоты следования импульсов, длительности импульса облучения, времени облучения, сечения реакции 16O(n,p)16N, числа Авогадро и молярной массы кислорода. Технический результат - повышение точности и оперативности измерений. 1 ил.

Изобретение относится к контролю ЯЭУ с водяным теплоносителем. Система содержит комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения (6) и устройство отбора и транспортировки анализируемой среды к датчикам радиоактивного излучения (6), и информационно-вычислительное устройство (10). На каждом контролируемом участке трубопровода (1) дополнительно установлены, по крайней мере, два комплекса измерения активности среды, включающие датчики радиоактивного излучения (6), которые избирательно-чувствительны к излучению азота-16. Датчики радиоактивного излучения (6) расположены по всей длине трубопровода (1) на известных расстояниях. Устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков (5), проходящих через в теплоизоляцию (2) трубопровода (1). Одни торцы патрубков (5) выведены в подизоляционное пространство (4) трубопровода (1), а другие торцы патрубков (5) выведены к датчикам радиоактивного излучения (6). Определение местоположения и массового расхода течи проводят по совокупным показаниям задействованных комплексов измерения активности азота-16. Технический результат - повышение точности определения местоположения и массового расхода течи. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для контроля изгиба удлиненных изделий, в частности каналов активной зоны ядерного реактора. Сущность: измеритель искривления содержит емкостные датчики зазора, закрепленные на контролируемом изделии и подключенные к измерителям емкости. Конденсаторные пластины (5), образующие емкостные датчики зазора, установлены на отдельных держателях (3), закрепленных на контролируемом изделии. Расстояние между точками крепления держателей (3) в осевом направлении больше зазора между конденсаторными пластинами (5). На каждом держателе (3) установлено по несколько конденсаторных пластин (5) с угловым смещением относительно друг друга в поперечном сечении держателя (3). Измерители емкости выполнены в виде усилителей заряда. Предложены частные случаи исполнения устройства. В первом частном случае держатели (3) выполнены в виде соосных обечаек разного диаметра, а на цилиндрических поверхностях обечаек, обращенных навстречу друг другу, закреплены пары цилиндрических конденсаторных пластин (5), образующих радиальный зазор. Во втором частном случае держатели (3) выполнены в виде пары одинаковых обечаек с фланцами на торцах, обращенных навстречу друг другу, а на фланцах закреплены пары плоских конденсаторных пластин (5), образующих осевой зазор. Технический результат: расширение функциональных возможностей измерителя. 2 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения профиля искривления протяженных трубчатых каналов. Измеритель искривления трубчатого канала содержит датчики изгиба (4), подключенные к измерительной схеме. Измеритель искривления трубчатого канала выполнен в виде несущего корпуса (2), размещенного внутри трубчатого канала (1) по всей его длине и жестко связанного с внутренними стенками трубчатого канала (1) радиальными перемычками (3). На несущем корпусе (2) закреплен, по меньшей мере, один механический преобразователь радиуса изгиба в величину зазора между перемещаемыми при изгибе деталями, на которых установлены датчики изгиба (4). В частных случаях исполнения устройства датчик изгиба (4) выполнен в виде конденсаторов, пластины которых закреплены на деталях, образующих зазор, или в виде магнитопроводов с обмотками и магнитных сердечников, закрепленных на деталях, образующих зазор. Технический результат заключается в расширении функциональных возможностей измерителя искривления трубчатого канала. 2 з.п. ф-лы, 4 ил.

 


Наверх