Патенты автора Жуков Алексей Евгеньевич (RU)

Изобретение относится к области формирования микроструктур для использования в различных оптоэлектронных устройствах, а более конкретно к области формирования лазерных микрорезонаторов, обладающих одночастотным спектром излучения. Задачей настоящего изобретения является разработка простого в реализации способа селекции мод в работающих при комнатной температуре микролазерах, который бы был эффективен по отношению ко всем типам мод микрорезонатора, как радиальным, так и азимутальным. Техническим результатом, позволяющим выполнить поставленную задачу, является увеличение максимальной интенсивности излучения лазерной моды оптического микрорезонатора в 20 раз и увеличение коэффициента подавления боковых мод на 14 дБ. В способе селекции оптических мод микрорезонатора формируют осесимметричный микрорезонатор с помощью травления слоистой полупроводниковой структуры, формируют наноантенну, примыкающую к внешней боковой поверхности микрорезонатора и вытянутую в направлении, перпендикулярном слоям слоистой полупроводниковой структуры, наноантенну формируют под действием сфокусированного электронного пучка в присутствии газа-прекурсора. 8 з.п. ф-лы, 8 ил.

Изобретение относится к полупроводниковым фотопреобразователям, которые преобразуют солнечное излучение в электроэнергию, и может быть использовано в полупроводниковой промышленности для создания систем генерации электрической энергии. Фотопреобразователь с квантовыми точками состоит из подложки (1), например Ge или GaAs, и по меньшей мере одного фотоактивного р-n перехода (2), например из GaAs или GaInAs с концентрацией индия 0-2%, содержащего базовый слой (3), например из GaAs или GaInAs с концентрацией индия 0-2%, нелегированный слой (4), например из GaAs или GaInAs с концентрацией индия 0-2%, содержащий по меньшей мере один слой самоорганизованных квантовых точек (5), выполненных посредством осаждения слоя InxGa1-xAs с содержанием индия x от 20 до 50%, эмиттерный слой (6), например из GaAs или GaInAs с концентрацией индия 0-2%. Фотопреобразователь имеет увеличенное КПД за счет повышения тока, генерируемого фотоактивным переходом на основе Ga(n)As. 5 з.п. ф-лы, 3 ил.

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств состоит из полупроводниковой подложки (1) с лицевой поверхностью, разориентированной от плоскости (100) на (0,5-10) градусов и, по меньшей мере, одного р-n перехода (2), включающего, по меньшей мере, один активный полупроводниковый слой (3), заключенный между двумя барьерными слоями (4) с шириной запрещенной зоны Eg0. Активный полупроводниковый слой (3) состоит из граничащих с барьерными слоями (4) и чередующихся в плоскости активного полупроводникового слоя (3) пространственных областей (5), (6) первого и второго типов. Пространственные области (5) первого типа имеют ширину запрещенной зоны Eg1<Eg0, a пространственные области (6) второго типа имеют ширину запрещенной зоны Eg2<Eg1. Полупроводниковая структура согласно изобретению обеспечивает увеличение эффективности фотопреобразующего и светоизлучающих приборов, при этом в фотопреобразующих устройствах увеличение эффективности происходит за счет увеличения фототока при распространении спектральной чувствительности в длинноволновую область, и обеспечения высокого уровня фотогенерации и разделения носителей заряда, а в светоизлучающих устройствах увеличение эффективности происходит за счет увеличения вероятности генерации фотонов и уменьшения вероятности безизлучательной рекомбинации посредством обеспечения высокой плотности областей, локализующих носители заряда в трех направлениях.10 з.п. ф-лы, 11 ил., 5 пр.

Способ формирования массивов квантовых точек повышенной плотности для использования в различных оптоэлектронных устройствах. Способ формирования массива квантовых точек высокой плотности включает три этапа. На первом происходит формирование зародышевого ряда квантовых точек в режиме субмонослойного осаждения, т.е. последовательного осаждения нескольких слоев напряженного материала, толщина каждого из которых не превышает один монослой, разделенных слоями ненапряженного материала толщиной несколько монослоев. Квантовые точки зародышевого ряда обладают высокой плотностью и большой шириной запрещенной зоны. На втором этапе происходит осаждение промежуточного слоя ненапряженного материала. Его толщина выбирается достаточно малой, так что поля напряжения, образующиеся от квантовых точек зародышевого ряда, могут оказывать влияние на миграцию атомов на его поверхности. На третьем этапе происходит формирование наследующего ряда квантовых точек с помощью осаждения по крайней мере одного слоя напряженного материала, толщина которого превосходит критическую толщину островкового роста. Поверхностная плотность квантовых точек наследующего ряда задается поверхностной плотностью квантовых точек зародышевого ряда и потому велика. При этом ширина запрещенной зоны квантовых точек наследующего ряда имеет значение, типичное для квантовых точек, формируемых традиционными способами. Для управления шириной запрещенной зоны квантовые точки наследующего ряда могут быть покрыты напряженной квантовой ямой. Предпочтительными материалами является InAs в качестве напряженного материала, Iny(GaAl)1-yAs в качестве напряженной квантовой ямы (y составляет от 0.1 до 0.3.), GaAs либо AlxGa1-xAs (x не превосходит 0.4) в качестве ненапряженного материала. Преимущество AlxGa1-xAs в качестве ненапряженного материала заключается в том, что при его использовании ширина запрещенной зоны квантовых точек зародышевого ряда дополнительно увеличивается, так что они не оказывают влияния на оптические характеристики образующегося массива. Технический результат: возможность формирования массивов квантовых точек с контролируемой длиной волны излучения в диапазоне от 1.05 до 1.35 мкм и поверхностной плотностью 5*1011 см-2 в расчете на один ряд. 6 з.п. ф-лы, 7 ил.

 


Наверх