Патенты автора Манапов Ирик Усманович (RU)

Изобретение относится к области авиадвигателестроения и может быть использовано при изготовлении моноколес, применяемых в роторах газотурбинных двигателей. Способ включает изготовление полых лопаток с образованием аэродинамического профиля пера и замковой части, технологического кольца и диска, сварку лопаток с технологическим кольцом с образованием блинга, после чего проводят механическую обработку блинга и диска для получения совмещаемых поверхностей. Собирают блинг с диском по совмещаемым поверхностям, причем в полости, образуемой между ними, создают вакуум и герметизируют ее. Затем осуществляют сварку давлением блинга с диском для образования моноколеса. Производят термическую правку лопаток и заключительную механическую обработку моноколеса, включающую удаление технологического кольца и формирование межлопаточного пространства и трактовой части. Сварку лопаток с технологическим кольцом с образованием блинга можно выполнить электронно-лучевой сваркой. Полость, образуемую совмещаемыми поверхностями блинга и диска, можно обваривать аргонодуговой сваркой по торцевым поверхностям блинга и диска и создавать в ней вакуум остаточным давлением не выше 10-1 Па, после чего герметизировать. Окончательную сварку блинга с диском можно выполнять в автоклаве, в температурном интервале Тпп - (50…60)°С, где Тпп - температура фазового перехода материала лопаток, при сварочном давлении 3,0…5,0 МПа и времени сварки 2,0…4,0 часа. Термическую правку лопаток можно выполнять в температурном интервале 600…650°С в течение 1,0…2,0 часов. Согласно изобретению лопатки и диск изготавливают соответственно из титановых сплавов ВТ6 и ВТ8. Предложенное изобретение позволяет снизить вес моноколеса и трудоемкость его изготовления с одновременным повышением качества сварного моноколеса. Изобретение позволяет повысить динамическую и циклическую прочность материала лопаток и диска в зоне сварки. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области авиадвигателестроения. Опора вала ротора КНД ТРД снабжена системой упругогидравлического демпфирования колебаний вала ротора и содержит роликоподшипник. Статорная часть включает корпус роликоподшипника, соединенный с корпусом опоры. Корпус опоры охвачен корпусом ВНА КНД с образованием двух кольцевых полостей. Одна из полостей снабжена упругим кольцом, которое снабжено с внешней и внутренней стороны односторонними выступами, взаимно смещенными по окружности через один с угловой частотой γв.у.к=(2,2÷4,8) [ед/рад]. Вторая полость содержит элемент типа «беличье колесо», выполненный в корпусе опоры в виде системы продольных упругих балочек, разделенных прорезями, выполненных шириной, в (1,1÷2,4) раза превышающей ширину балочек, и расположенных с угловой частотой γб.б.к., определенной в диапазоне γб.б.к.=(7,2÷14,4) [ед/рад]. Статорная часть опоры содержит два кольцевых элемента, наделенных крышками лабиринтов, и два ответных гребешковых кольца лабиринта. Роторная часть опоры включает цапфу с установленным у фронтального конца цапфы внутренним кольцом роликоподшипника. На примыкающем к нему участке расположена контактная втулка браслетного уплотнения, упирающаяся в гребешковое кольцо первого лабиринта. Гребешковое кольцо первого лабиринта совместно с ответной крышкой лабиринта разделяет полость суфлирования с полостью наддува воздуха, объем которой ограничен гребешковым кольцом второго лабиринта, установленным на конической диафрагме цапфы, образующей с цилиндрическим участком одно целое и неразъемно соединенной с диском первой ступени вала ротора. Внутри цапфы вставлена торцевая втулка. Браслетное уплотнение включает контактную втулку с подвижным примыканием к контактным поверхностям колец уплотнительного браслета. Браслет выполнен состоящим из трех многосекционных колец. Внутреннее уплотнительное и радиально охватывающее его наружное кольца установлены в браслете с фронтальной стороны. Третье кольцо выполнено тыльным и примыкает к первым двум боковой гранью. Каждое из колец браслета выполнено из локальных секций, собранных с угловой частотой γс.б.у.=(0,47÷0,79) [ед/рад]. Кольца браслета снабжены разгрузочными воздушными каналами. Внешние поверхности наружного и тыльного колец браслета снабжены кольцевым пазом для стягивающей секции колец пружины. От осевого смещения браслет упруго зафиксирован упорным и стопорным кольцами. В каждой секции тыльного кольца выполнено не менее двух глухих отверстий, в которых установлены упирающиеся в упорное кольцо пружины сжатия. Технический результат группы изобретений заключается в расширении диапазона рабочих режимов устойчивой работы двигателя с демпфированием колебаний вала ротора без вхождения в резонансные частоты и повышением ресурса компрессора и двигателя в целом. 5 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к области авиадвигателестроения. Опора вала ротора КНД ТРД снабжена системой упруго-гидравлического демпфирования колебаний вала ротора и содержит роликоподшипник, разделяющий опору на статорную и роторную части. Статорная часть включает корпус роликоподшипника, соединенный с корпусом опоры. Корпус опоры охвачен кольцевым элементом внутреннего корпуса ВНА КНД с образованием двух компактных кольцевых полостей. Одна из полостей снабжена упругим кольцом, которое снабжено с внешней и внутренней стороны односторонними выступами, взаимно смещенными по окружности через один с угловой частотой γв.у.к.=(2,2÷4,8) [ед/рад]. Вторая полость содержит элемент типа «беличье колесо», выполненный в корпусе опоры в виде системы продольных упругих балочек, разделенных прорезями, выполненных шириной, в (1,1÷2,4) раза превышающей ширину балочек, и расположенных с угловой частотой γб.б.к., определенной в диапазоне γб.б.к.=(7,2÷14,4) [ед/рад]. Статорная часть включает соединенный с корпусом опоры элемент формообразования полости «беличьего колеса», полостей суфлирования и наддува воздуха с закрепленными на нем крышками лабиринтов. В корпусе роликоподшипника размещен уплотнительный браслет контактного сегментного радиально-торцевого браслетного уплотнения масляной полости. Роторная часть опоры включает цапфу передней опоры вала ротора, переходящую в образующий с ней одно целое диск первой ступени вала ротора. На цапфе размещено внутреннее кольцо роликоподшипника, контактная втулка браслетного уплотнения и кольцо двух многогребешковых лабиринтов, подвижно запирающих с двух сторон полость наддува воздуха. Корпус роликоподшипника выполнен с радиально развитым фланцем для соединения с фронтальным торцевым фланцем корпуса опоры. Фланец наделен четырьмя группами отверстий соответственно для центрирования, крепления, демонтажа корпуса роликоподшипника и отвода масла, ответными одноименным группам отверстий фронтального торцевого фланца корпуса опоры. Технический результат группы изобретений заключается в расширении диапазона рабочих режимов устойчивой работы двигателя с демпфированием колебаний вала ротора без вхождения в резонансные частоты и повышением ресурса компрессора и двигателя в целом. 6 н. и 19 з.п. ф-лы, 6 ил.

Изобретение относится к области авиадвигателестроения. Рабочее колесо первой ступени ротора, включающего вал барабанно-дисковой конструкции компрессора низкого давления (КНД) турбореактивного двигателя (ТРД) содержит диск, наделенный пазами, и лопаточный венец, при этом диск выполнен в виде моноэлемента, включающего ступицу с центральным отверстием, полотно и обод, а лопатки содержат каждая хвостовик и перо с профилем, образованным вогнутым корытом и выпуклой спинкой, сопряженными входной и выходной кромками. Полотно диска выполнено с переменным по высоте сечением, конически сужающимся от ступицы к ободу с градиентом Gп уменьшения толщины в указанном направлении, равным Gп=(δп.п. - δк.п.)/Нср=(0,11÷0,15) [м/м], где δп.п. - толщина периферийной части полотна диска; δк.п. - толщина прикорневой части полотна; Нср - радиальная высота полотна диска между участками сопряжений со ступицей и ободом. Ступица выполнена как одно целое с цапфой передней опоры вала ротора, односторонне развитой ко входу в КНД и выполненной с переменным диаметром, ступенчато уменьшающимся не менее чем через два уступа от полотна диска к опорному концевому участку цапфы. Внешняя поверхность обода диска выполнена составляющей осевой участок внутреннего контура проточной части с осевой длиной, равной проекции образующей обода на ось вала ротора, и с радиусом, возрастающим в осевом сечении КНД в сторону потока рабочего тела, причем обод соединен с полотном диска с образованием фронтальной и тыльной кольцевых конических полок. Тыльная полка снабжена кольцевым элементом, выполненным для последующего неразъемного соединения с фронтальной полкой полотна диска второй ступени, а пазы равномерно разнесены по периметру обода диска с угловой частотой Yп=(4,6÷6,2) [ед/рад] и выполнены с взаимно наклонными боковыми гранями, имеющими в поперечном сечении конфигурацию элемента замкового соединения с хвостовиком лопатки. Пазы для заведения хвостовиков лопаток равномерно разнесены по периметру обода диска, при этом подошва каждого паза расположена в плоскости, параллельной оси вала ротора, а продольная ось подошвы паза образует с осью вала ротора в проекции на указанную плоскость угол α установки хвостовика лопатки, определенный в диапазоне значений α=(16÷22)°, а входная и выходная кромки пера выполнены расходящимися к периферийному торцу лопатки с градиентом Gу.х. увеличения соединяющей их хорды, равным Gу.х.=(Lп.х. - Lк.х.)/Hcp=(9,3÷13,3)·10-2 [м/м], где Lп.х. - длина периферийной хорды, соединяющей входную и выходную кромки пера лопатки в условной плоскости, перпендикулярной к оси пера лопатки; Lк.х. - то же, длина корневой хорды; Нср - средняя высота пера лопатки. Изобретение позволяет повысить КПД и увеличить запас газодинамической устойчивости на всех режимах работы компрессора при повышении ресурса рабочего колеса ротора КНД без увеличения материалоемкости. 2 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к области авиадвигателестроения. Рабочее колесо третьей ступени вала ротора КНД ГТД содержит диск, включающий ступицу с центральным отверстием, полотно и обод, а также лопатки, имеющие каждая хвостовик и перо с профилем, образованным вогнутым корытом и выпуклой спинкой. Обод диска соединен с полотном с образованием разноплечих кольцевых конических наклонных полок. Радиус диска Rд от оси до внешней поверхности обода в средней плоскости полотна составляет (0,59÷0,84) от радиуса Rп.ч. периферийного контура проточной части в указанной плоскости. Обод диска снабжен равномерно разнесенной по периметру диска системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол α установки хвостовика лопатки, определенный в диапазоне значений α=(17÷25)°. Лопатка выполнена с переменным по высоте пера углом установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом . Кроме того, перо лопатки выполнено переменной по ширине и высоте пера толщиной. Максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом . Изобретение позволяет повысить КПД и увеличить запас газодинамической устойчивости на всех режимах работы компрессора при повышении ресурса рабочего колеса ротора КНД без увеличения материалоемкости. 2 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к области авиадвигателестроения. Диск последней ступени ротора компрессора низкого давления ГТД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод симметрично соединен с полотном диска с образованием равноплечих кольцевых полок. Полотно диска выполнено с возможностью разъемного соединения через проставку с полкой диска предшествующей ступени. Обод диска выполнен с возрастающим в сторону потока рабочего тела в осевом сечении КНД радиусом и с углом φ=(1,8÷3,4)° образующей внешней поверхности обода относительно оси вала ротора. Обод диска снабжен системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к продольной оси пера лопатки, угол α установки хвостовика лопатки, определенный в диапазоне значений (20,1÷29,2)°. Пазы равномерно разнесены по периметру диска с угловой частотой Yп=(5,8÷7,9) [ед/рад] и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком лопатки. Достигается повышение КПД и расширение диапазона режимов газодинамической устойчивости компрессора на 2,1% при повышении ресурса диска в 2 раза. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения. Диск второй ступени ротора компрессора низкого давления ГТД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод асимметрично соединен с полотном диска с образованием разноплечих кольцевых конических наклонных полок. Обод диска выполнен с возрастающим в сторону потока рабочего тела в осевом сечении КНД радиусом и с углом образующей внешней поверхности обода относительно оси вала ротора, идентичным осевому углу относительно той же оси образующей внутреннего контура проточной части. Радиус диска Rд от оси до внешней поверхности обода в средней плоскости полотна составляет (0,54÷0,77) от радиуса Rп.ч. периферийного контура проточной части в указанной плоскости. Обод диска снабжен системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол α установки хвостовика лопатки, определенный в диапазоне значений α=(19÷27)°. Пазы равномерно разнесены по периметру диска с угловой частотой Yп=(6,0÷8,2) [ед./рад] и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком лопатки. Достигается повышение КПД и расширение диапазона режимов газодинамической устойчивости компрессора на 2,1% при повышении ресурса диска в 2 раза. 4 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения. Лопатка рабочего колеса второй ступени, имеющего диск с пазами и лопаточный венец с фронтальной линией решетки профилей пера, в составе ротора компрессора низкого давления (КНД) газотурбинного двигателя (ГТД), содержащего проточную часть, ограниченную по периферийному контуру корпусом двигателя, имеющего силовую турбину, содержит хвостовик и перо с выпукло-вогнутым профилем. Перо лопатки выполнено со спиральной закруткой относительно оси пера, создающей переменный по высоте пера угол γуст установки профиля пера, определенный как угол между общей касательной, соединяющей входную и выходную кромки, образуя хорду профиля, и фронтальной линией решетки профилей в плоской развертке цилиндрического сечения лопаточного венца, имеющий в корневом сечении пера значение γуст.к=(65,2÷73,2)°, а в периферийном сечении значение ууст.п=(35,8÷43,8)°. Лопатка выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gy.п=(196,3÷282,2) [град/м]. Перо лопатки выполнено с входной и выходной кромками, расходящимися к периферийному торцу с градиентом увеличения хорды Gy.x=(7,4÷10,7)·10-2 [м/м]. Перо лопатки выполнено переменной по ширине и высоте пера толщиной. Максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gy.т=(1,14÷1,63)·10-2 [м/м]. Технический результат состоит в улучшении геометрической конфигурации, пространственной жесткости, силовых и аэродинамических параметров лопатки рабочего колеса второй ступени вала ротора КНД ГТД, а также в повышении КПД и расширении диапазона режимов ГДУ компрессора при повышении ресурса лопатки. 4 н. и 21 з.п. ф-лы, 3 ил.

Изобретение относится к области авиадвигателестроения. Лопатка рабочего колеса четвертой ступени, имеющего диск с пазами и лопаточный венец с фронтальной линией решетки профилей пера, в составе ротора компрессора низкого давления (КНД) газотурбинного двигателя (ГТД), содержащего проточную часть, ограниченную по периферийному контуру корпусом двигателя, имеющего силовую турбину, содержит хвостовик и перо с выпукло-вогнутым профилем. Перо лопатки выполнено со спиральной закруткой относительно оси пера, создающей переменный по высоте пера угол γуст установки профиля пера, определенный как угол между общей касательной, соединяющей входную и выходную кромки, образуя хорду профиля, и фронтальной линией решетки профилей в плоской развертке цилиндрического сечения лопаточного венца, имеющий в корневом сечении пера значение γуст.к.=(61,3÷69,3)°, а в периферийном сечении значение γуст.п=(38,7÷46,7)°. Лопатка выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gy.п=(217,0÷311,9) [град/м]. Перо лопатки выполнено с входной и выходной кромками, расходящимися к периферийному торцу с градиентом увеличения хорды Gy.x=(2,9÷4,3)·10-2 [м/м]. Перо лопатки выполнено переменной по ширине и высоте пера толщиной. Максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gy.т.=(1,82÷2,62)·10-2 [м/м]. Технический результат состоит в улучшении геометрической конфигурации, пространственной жесткости, силовых и аэродинамических параметров лопатки рабочего колеса четвертой ступени вала ротора КНД ГТД, а также в повышении КПД и расширении диапазона режимов ГДУ компрессора при повышении ресурса лопатки. 4 н. и 21 з.п. ф-лы, 3 ил.

Лопатка четвертой ступени ротора компрессора низкого давления турбореактивного двигателя, содержащего рабочее колесо с диском, наделенным пазами, и лопаточным венцом, имеющим решетку профилей пера с фронтальной линией. Лопатка содержит хвостовик и перо с выпукло-вогнутым профилем. Перо лопатки выполнено с углом γ установки профиля, определенным как угол между соединяющей входную и выходную кромки профиля хордой и фронтальной линией решетки лопаточного венца, имеющий в проекции на условную плоскость, перпендикулярную к оси пера, в корневом сечении профиля значение γк=(49,7÷57,7)°. Лопатка выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gу.п=(152,3÷218,9) [град/м]. Перо лопатки выполнено с входной и выходной кромками, расходящимися к периферийному торцу с градиентом увеличения хорды Gу.х=(4,3÷6,2)·10-2 [м/м]. Лопатка выполнена с отношением высоты h входной кромки профиля пера к средней хорде Lcp, разделяющей площадь рабочей поверхности профиля на две равные части, составляющим h/Lcp=(1,5÷2,2). Перо лопатки выполнено переменной по ширине и высоте пера толщиной. Максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gу.т=(1,6÷2,3)10-2 [м/м]. Технический результат состоит в повышении КПД и расширении диапазона режимов газодинамической устойчивости компрессора на 2,4% при повышении ресурса лопатки в 2 раза. 4 н. и 21 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения. Лопатка рабочего колеса второй ступени ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), содержащего рабочее колесо с диском, наделенным пазами, и лопаточным венцом, имеющим решетку профилей пера с фронтальной линией. Лопатка содержит хвостовик и перо с выпукло-вогнутым профилем. Перо лопатки выполнено с углом γ установки профиля, определенным как угол между соединяющей входную и выходную кромки профиля хордой и фронтальной линией решетки лопаточного венца, имеющий в проекции на условную плоскость, перпендикулярную к оси пера, в корневом сечении профиля значение γк = (68,8÷74,8)°. Лопатка выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gу.п = (207,3÷297,9) [град/м]. Перо лопатки выполнено с входной и выходной кромками, расходящимися к периферийному торцу с градиентом увеличения хорды Gу.х = (6,6÷9,5)·10-2 [м/м]. Перо лопатки выполнено переменной по ширине и высоте пера толщиной. Максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gу.т = (1,54÷2,2)·10-2 [м/м]. Технический результат состоит в улучшении геометрической конфигурации, пространственной жесткости, силовых и аэродинамических параметров лопатки рабочего колеса второй ступени вала ротора КНД ТРД, а также в повышении КПД и расширении диапазона режимов ГДУ компрессора при повышении ресурса лопатки. 4 н. и 21 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения. Лопатка снабженного пазами диска рабочего колеса ротора компрессора низкого давления (КНД) газотурбинного двигателя (ГТД), включающего проточную часть, ограниченную по периферийному контуру корпусом двигателя, содержит перо и хвостовик. Лопатка предназначена для установки в любой из пазов диска рабочего колеса первой ступени. Хвостовик лопатки имеет продольную ось, соосную или параллельную геометрической оси паза диска и образующую с осью вращения ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол установки хвостовика, обеспечивающий получение угла установки профиля пера в корневом сечении лопатки в диапазоне αк=(17÷27)°. Перо лопатки выполнено с закруткой относительно оси пера, обеспечивающей нарастание угла установки профиля пера по высоте лопатки с радиальным удалением от оси вращения ротора с градиентом Gу.п., определенным в диапазоне Gу.п.=(124,0÷186,8) [град/м]. Перо лопатки выполнено с входной и выходной кромками, расходящимися к периферийному торцу с градиентом увеличения хорды Gу.х., составляющим (7,2÷10,7)·10-2 [м/м]. Толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gу.т.=(1,25÷1,53)·10-2 [м/м]. Технический результат, достигаемый группой изобретений, состоит в улучшении геометрической конфигурации, пространственной жесткости, силовых и аэродинамических параметров лопатки рабочего колеса первой ступени вала ротора КНД ГТД, а также в увеличении рабочего ресурса без увеличения материалоемкости и трудоемкости установки лопатки в рабочее колесо компрессора. 4 н. и 21 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения. Лопатка снабженного пазами диска рабочего колеса ротора компрессора низкого давления (КНД) газотурбинного двигателя (ГТД), включающего проточную часть, ограниченную по периферийному контуру корпусом двигателя, содержит перо и хвостовик. Лопатка предназначена для установки в любой из пазов диска рабочего колеса третьей ступени. Хвостовик лопатки имеет продольную ось, соосную или параллельную геометрической оси паза диска и образующую с осью вращения ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол установки хвостовика, обеспечивающий получение угла установки профиля пера в корневом сечении лопатки в диапазоне αк=(20,4÷29,8)°. Перо лопатки выполнено с закруткой относительно оси пера, обеспечивающей нарастание угла установки профиля пера по высоте лопатки с радиальным удалением от оси вращения ротора с градиентом Gу.п.,, определенным в диапазоне Gу.п=(169,5÷248,4) [град/м]. Перо лопатки выполнено с входной и выходной кромками, расходящимися к периферийному торцу с градиентом увеличения хорды Gу.x., составляющим (5,8÷8,4)·10-2 [м/м]. Толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gу.т.=(1,44÷1,72)·10-2 [м/м]. Технический результат, достигаемый группой изобретений, состоит в улучшении геометрической конфигурации, пространственной жесткости, силовых и аэродинамических параметров лопатки рабочего колеса третьей ступени вала ротора КНД ГТД, а также в увеличении рабочего ресурса без увеличения материалоемкости и трудоемкости установки лопатки в рабочее колесо компрессора. 4 н. и 21 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Газотурбинный двигатель выполнен двухконтурным, двухвальным, содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло. Входной направляющий аппарат компрессора низкого давления снабжен радиальными стойками, равномерно разнесенными в нормальной к оси двигателя плоскости входного сечения с угловой частотой (3,0÷4,0) ед./рад. Причем двигатель испытан по меньшей мере по одной из программ - многоцикловой, на газодинамическую устойчивость или на влияние климатических условий на основные эксплуатационные характеристики двигателя. Изобретение позволяет обеспечить улучшение тяги, а также повысить достоверность эксплуатационных характеристик газотурбинного двигателя и репрезентативность результатов испытаний для разных газодинамических ситуаций работы двигателя с одновременным упрощением технологии и сокращением трудо- и энергоемкости процесса испытаний. 11 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Способ серийного производства турбореактивного двигателя (ТРД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания ТРД, по меньшей мере, по одной из программ - многоцикловой на газодинамическую устойчивость или на влияние климатических условий на основные эксплуатационные характеристики двигателя. Также представлен турбореактивный двигатель, выполненный согласно настоящему способу. Изобретение позволяет обеспечить улучшение тяги, повышение достоверности эксплуатационных характеристик ТРД и репрезентативности результатов испытаний для разных газодинамических ситуаций работы двигателя. 2 н., 13 з. п. ф-лы, 2 ил., 4 табл.

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, а также содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло. Причем двигатель испытан, по меньшей мере, по одной из программ - многоцикловой, на газодинамическую устойчивость или на влияние климатических условий на основные эксплуатационные характеристики двигателя. Изобретение позволяет обеспечить улучшение тяги, а также повысить достоверность эксплуатационных характеристик турбореактивного двигателя и репрезентативность результатов испытаний для разных газодинамических ситуаций работы двигателя. 11 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Способ капитального ремонта авиационных турбореактивных двигателей, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. В процессе испытаний применяют выдвижной интерцептор, исключающий промежуточные остановы и запуски капитально отремонтированного двигателя. Также представлены турбореактивный двигатель, отремонтированный согласно способу, а также способ капитального ремонта партии. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, повысить эксплуатационные качества, а также надежность определения газодинамической устойчивости работы двигателя без введения двигателя в помпаж. 6 н. и 15 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Способ серийного производства турбореактивного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя, собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. В процессе изготовления компрессора низкого давления входной направляющий аппарат оснащают аэродинамически прозрачной силовой решеткой из радиальных стоек. Также представлен турбореактивный двигатель, выполненный согласно способу. Изобретение позволяет обеспечить улучшение тяги, а также повысить достоверность эксплуатационных характеристик турбореактивного двигателя и репрезентативность результатов испытаний для разных газодинамических ситуаций работы двигателя, с одновременным упрощением технологии и сокращением трудо- и энергоемкости процесса испытаний. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и поворотное реактивное сопло, включающее поворотное устройство и регулируемое реактивное сопло. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя. Входной направляющий аппарат компрессора низкого давления снабжен радиальными стойками. Изобретение позволяет обеспечить улучшение тяги, а также повысить достоверность эксплуатационных характеристик газотурбинного двигателя и репрезентативность результатов испытаний для разных газодинамических ситуаций работы двигателя, с одновременным упрощением технологии и сокращением трудо- и энергоемкости процесса испытаний. 12 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на влияние климатических условий на основные характеристики работы компрессора. Испытания проведены с измерением параметров работы двигателя на различных режимах. Также представлен газотурбинный двигатель, выполненный согласно способу. Изобретение позволяет обеспечить улучшение тяги и повысить достоверность эксплуатационных характеристик для разных температурно-климатических условий, а также упростить процесс испытания газотурбинного двигателя на этапе серийного промышленного производства. 2 н. и 9 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к энергетике. Турбореактивный двигатель (ТРД), выполненный двухконтурным, двухвальным, содержит не менее восьми модулей, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и поворотное реактивное сопло, включающее поворотное устройство и регулируемое реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги. Двигатель испытывается на стенде, который снабжен входным аэродинамическим устройством с дистанционно управляемым выдвижным интерцептором. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ТРД в полетных условиях. Изобретение позволяет обеспечить повышение объемности и надежности статически достоверных данных о допустимых границах частотных режимов вращения ротора с обеспечением газодинамической устойчивости двигателей с одновременным упрощением технологии и сокращением трудо- и энергоемкости процесса испытания. 8 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания ГТД, по меньшей мере, по одной из программ - многоцикловой, на газодинамическую устойчивость или на влияние климатических условий на основные эксплуатационные характеристики двигателя. Также представлен газотурбинный двигатель, выполненный согласно настоящему способу. Изобретение позволяет обеспечить улучшение тяги, повышение достоверности эксплуатационных характеристик ГТД и репрезентативности результатов испытаний для разных газодинамических ситуаций работы двигателя. 2 н. и 13 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. При этом капитально отремонтированный двигатель испытывают на влияние климатических условий на основные характеристики работы компрессора. Испытания проводят с измерением параметров работы двигателя на различных режимах. Также представлены способ капитального ремонта партии, а также газотурбинный двигатель, отремонтированный согласно настоящему способу. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества и надежность определения влияния климатических условий. 6 н. и 14 з.п. ф-лы, 1 ил., 4 табл.

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя (ГТД), при котором создают ротационно обновляемый запас восстановленных деталей: модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. При этом капитально отремонтированный двигатель испытывают по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Также представлены способ капитального ремонта партии, а также газотурбинный двигатель, отремонтированный согласно настоящему способу. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества ГТД и достоверность экспериментально проверенного ресурса и надежности двигателя. 6 н. и 16 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания ГТД, по меньшей мере, по одной из программ - многоцикловой, на газодинамическую устойчивость или на влияние климатических условий на основные эксплуатационные характеристики двигателя. Также представлен газотурбинный двигатель, выполненный согласно способу. Изобретение позволяет обеспечить улучшение тяги, а также повысить достоверность эксплуатационных характеристик ГТД и репрезентативности результатов испытаний для разных газодинамических ситуаций работы двигателя. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Способ капитального ремонта турбореактивного двигателя, при котором создают ротационно-обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. При этом капитально отремонтированный двигатель испытывают на влияние климатических условий на основные характеристики работы компрессора. Также представлены способ капитального ремонта партии, а также турбореактивный двигатель, отремонтированный согласно способу. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества и надежность. 6 н. и 14 з.п. ф-лы, 1 ил., 4 табл.

Изобретение относится к энергетике. Газотурбинный двигатель выполнен двухконтурным, двухвальным, содержит не менее восьми модулей, включая компрессор высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и поворотное реактивное сопло, включающее поворотное устройство и регулируемое реактивное сопло. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя. Стенд для испытания двигателя снабжен входным аэродинамическим устройством с дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора с фиксированной критической точкой, отделяющей двигатель на 2-5% от перехода в помпаж. Изобретение позволяет повысить достоверность данных о допустимых границах частотных режимов вращения ротора с обеспечением газодинамической устойчивости двигателей. 2 н. и 14 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя (ГТД), при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. При этом капитально отремонтированный двигатель испытывают на влияние климатических условий на основные характеристики работы компрессора. Испытания проводят с измерением параметров работы двигателя на различных режимах. Также представлены способ капитального ремонта партии, а также газотурбинный двигатель, отремонтированный согласно настоящему способу. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества и надежность определения влияния климатических условий, оказываемого на изменение эксплуатационных характеристик ГТД. 6 н. и 15 з.п. ф-лы, 1 ил., 4 табл.

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, при этом содержит не менее восьми модулей, смонтированных предпочтительно по модульно-узловой системе, включая компрессор высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло. Двигатель содержит коробку приводов двигательных агрегатов. Смонтированный двигатель испытан на влияние климатических условий на основные характеристики работы компрессора. Испытания проведены с измерением параметров работы двигателя на различных режимах. Изобретение позволяет обеспечить улучшение тяги, а также позволяет повысить достоверность эксплуатационных характеристик для разных температурно-климатических условий и режимов эксплуатации двигателя, и при этом позволяет повысить репрезентативность результатов испытаний. 6 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к энергетике. Способ капитального ремонта турбореактивного двигателя (ТРД), при котором создают ротационно-обновляемый запас восстановленных деталей: модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. При этом капитально отремонтированный двигатель испытывают по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Также представлены способ капитального ремонта партии, а также турбореактивный двигатель, отремонтированный согласно настоящему способу. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества ТРД и достоверность экспериментально проверенного ресурса и надежности двигателя. 6 н. и 16 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, при этом содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, включая компрессор высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло. Двигатель испытан на стенде, который снабжен выдвижным интерцептором, пересекающим входной воздушный поток. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. Изобретение позволяет обеспечить повышение объемности и надежности статически достоверных данных о допустимых границах частотных режимов вращения ротора с обеспечением газодинамической устойчивости двигателей с одновременным сокращением трудо- и энергоемкости процесса испытаний. 7 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Способ капитального ремонта турбореактивного двигателя (ТРД), при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. При этом капитально отремонтированный двигатель испытывают по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Также представлены способ капитального ремонта партии, а также турбореактивный двигатель, отремонтированный согласно настоящему способу. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества ТРД и достоверность экспериментально проверенного ресурса и надежности двигателя. 6 н. и 17 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя (ГТД), при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. При этом капитально отремонтированный двигатель испытывают по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Также представлены способ капитального ремонта партии, а также газотурбинный двигатель, отремонтированный согласно настоящему способу. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества ГТД и достоверность экспериментально проверенного ресурса и надежности двигателя. 6 н. и 17 з.п. ф-лы, 1 ил.
Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на этапе серийного производства и расширении репрезентативности оценки ресурса и надежности работы газотурбинного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 2 н. и 11 з.п. ф-лы, 2 ил.
Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным и содержит реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя. Смонтированный двигатель испытан на влияние климатических условий на основные характеристики работы компрессора. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении качества и надежности эксплуатационных характеристик ТРД за счет применения в двигателе совокупности основных модулей и сборочных единиц с разработанными в изобретении техническими решениями, параметрами и за счет менее энерго- и трудоемкого получения и более корректного приведения экспериментально полученных параметров двигателя к параметрам, соответствующим стандартным атмосферным условиям, а также в повышении репрезентативности результатов испытаний для полного диапазона полетных циклов в различных климатических условиях. 7 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ТРД. В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ТРД. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ТРД, а именно тяги, и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на стадии доводки опытного ТРД. 3 з.п. ф-лы, 2 ил., 4 табл., 1 пр.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ГТД. Проводят обследование. Для анализа и оценки состояния при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного ГТД. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль - от компрессора низкого давления до всережимного регулируемого реактивного сопла. На стадии доводки опытный ГТД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на стадии доводки опытных ГТД и расширении репрезентативности оценки ресурса и надежности работы ГТД в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 4 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. После сборки производят испытания двигателя на влияние климатических условий на основные характеристики работы компрессора. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ГТД, а именно тяги, экспериментально проверенным ресурсом, и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на этапе серийного промышленного производства. 2 н. и 9 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. На стадии доводки опытный ТРД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающим время полета не менее чем в 5-6 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на стадии доводки опытных ТРД и расширении репрезентативности оценки ресурса и надежности работы ТРД в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. После сборки производят испытания двигателя по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на этапе серийного производства и расширении репрезентативности оценки ресурса и надежности работы газотурбинного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 2 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ГТД. В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ГТД. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ГТД, а именно тяги, экспериментально проверенным ресурсом, и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на стадии доводки опытного ГТД. 3 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5-6 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний и расширении репрезентативности оценки ресурса и надежности работы турбореактивного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 8 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ГТД. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль - от компрессора низкого давления до всережимного поворотного реактивного сопла, включающего регулируемое реактивное сопло и разъемно прикрепленное к форсажной камере сгорания поворотное устройство, ось вращения которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°. В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ГТД. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ГТД, а именно тяги и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на стадии доводки опытного ГТД. 3 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ТРД. На стадии доводки опытный ТРД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на стадии доводки опытных ТРД и расширении репрезентативности оценки ресурса и надежности работы ТРД в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ТРД. Проводят обследование. В программу доводочных испытаний с последующей доводочной доработкой включают испытания двигателя на газодинамическую устойчивость работы компрессора. Опытный двигатель испытан на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ТРД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на стадии доводки ТРД при повышении достоверности определения границ допустимого диапазона варьирования тяги. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний и расширении репрезентативности оценки ресурса и надежности работы турбореактивного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 6 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения. В способе эксплуатации ТРД перед каждым запуском двигателя осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически производят профилактические осмотры и обслуживание модулей, узлов и коммуникационных систем. На завершающей стадии капитального ремонта после сборки двигатель испытывают по многоцикловой программе, включающей чередование режимов при выполнении этапов испытания длительностью работы ТРД. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Технический результат состоит в повышении корректности и расширении репрезентативности оценки ресурса и надежности работы двигателя после капитального ремонта и обеспечении повышенного послеремонтного ресурса двигателя в условиях летной эксплуатации ТРД на высокоманевренных самолетах. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ТРД. В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ТРД. Испытания проводят с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ТРД, а именно тяги, экспериментально проверенным ресурсом, и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на стадии доводки опытного ТРД. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на газодинамическую устойчивость работы компрессора. Конкретные или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным. Двигатель содержит коробку приводов двигательных агрегатов. Двигатель проверен на газодинамическую устойчивость работы компрессора. Конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в повышении основных эксплуатационных характеристик двигателя, объемности и надежности обеспечения газодинамической устойчивости работы ГТД, основанной на высокой статической достоверности данных о допустимых границах частотных режимов вращения роторов компрессора, с одновременным упрощением технологии и сокращением трудо- и энергоемкости процесса испытания двигателя. 7 з.п. ф-лы, 4 ил.

 


Наверх