Патенты автора Фомин Алексей Васильевич (RU)

Изобретение относится к полупроводниковой технике, к планарным лазерным гетероструктурам. Лазерная гетероструктура раздельного ограничения, выращенная на подложке GaAs n-проводимости, включает квантово-размерную активную область, волноводные слои, выполненные из твердого раствора AlxGa1-xAs, эмиттерные слои n-проводимости и p-проводимости, примыкающие к волноводным слоям и выполненные из твердого раствора Alx⋅Ga1-x⋅As. Гетероструктура снабжена контактными слоями n-проводимости и p-проводимости, примыкающими к соответствующим эмиттерным слоям n-проводимости и p-проводимости, волноводные слои контактируют непосредственно с квантово-размерной активной областью и эмиттерными слоями n-проводимости и p-проводимости и выполнены разнотолщинными и составляют 2у и y соответственно, где у находится в пределах от 0,75 до 0,85 мкм, мольная доля алюминия x твердого раствора AlxGa1-xAs в волноводных слоях на границах с эмиттерными слоями составляет 0,8х' и линейно уменьшается до 0,5x' на границах с квантово-размерной активной областью, а в эмиттерных слоях мольная доля алюминия x' твердого раствора Alx⋅Ga1-x⋅As находится в пределах от 0,4 до 0,45. Технический результат - усовершенствование конструкции лазерной гетероструктуры, создание дополнительного оптического ограничения между эмиттерными и волноводными слоями. 1 ил.

Изобретение относится к устройствам, специально предназначенным для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей, а именно к креплению полупроводникового прибора на опоре для сборки и пайки матриц лазерных диодов. Устройство для сборки и пайки матрицы лазерных диодов (МЛД)) включает основание 1, в котором сформирован паз ступенчатого профиля 2 под установку субмодулей 3 МЛД, состоящих из линеек лазерных диодов 4 (ЛЛД) и теплоотводов, ограничитель 5, к которому вплотную устанавливают первый субмодуль 3 (фиг. 1), подпор 6, выполненный с наклонной рабочей поверхностью (угол α), на которую устанавливают основание 1, прижимной элемент 7, расположенный в пазу ступенчатого профиля 2, гайка 8 обеспечивает перемещение прижимного элемента 7 в сторону ограничителя 5, поверх субмодулей 3 МЛД, на которые предварительно установлено единое диэлектрическое основание 9 МЛД, устанавливают фиксирующий элемент 10, который закрепляют при помощи элементов крепления 11. Под электрические выводы 12 МЛД в фиксирующем элементе 10 выполнены специальные пазы 13. Технический результат - обеспечение надежной фиксации субмодулей матрицы лазерных диодов при их сборке и дальнейшей пайке в устройстве. 2 з.п. ф-лы, 2 ил.

Изобретение может быть использовано для получения пайкой неразъемных соединений полупроводниковых лазерных излучателей. Осуществляют соединение первого тела 1, в качестве которого использовано теплоотводящее основание, и второго тела 5, в качестве которого использован лазерный диод, с помощью композиционного припоя 4, который формируют с начального слоя золота 4.1 и наносят на вспомогательный слой, состоящий из адгезионного слоя 2, граничащего с верхней поверхностью теплоотводящего основания 1, и барьерного слоя 3. Соединение выполняют под воздействием тепла и давления, достаточных для расплавления композиционного припоя 4, который формируют из базовых равнотолщинных слоев золота, являющихся первым 4.1, промежуточным 4.3 и финишным 4.5 слоями припоя, которые разделяют двумя мультислоями 4.2 и 4.4. Мультислои 4.2 и 4.4 образуют в соответствии с пошаговой процедурой последовательным нанесением чередующихся слоев золота и олова : n-количества слоев олова и (n-1)-количества слоев золота, начиная с олова, наносят последовательно на первый слой припоя 4.1. Соотношение толщин в мультислоях 4.2 и 4.4 между слоем золота и слоем олова, равно 1,25, сумма толщин одного слоя олова из мультислоев 4.2 и 4.4 с одним слоем золота из мультислоев 4.2 и 4.4 не менее 100 нм, но не более 270 нм, а n-количество слоев олова в мультислоях 4.2 и 4.4 и толщину h базовых равнотолщинных слоев золота 4.1, 4.3 и 4.5 определяют из заданных математических выражений. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области лазерной техники и касается лазерного модуля. Лазерный модуль содержит ступенчатое основание, на котором размещены лазерные диоды, микролинзы, линзы, плоские зеркала и фокусирующие линзы. Оптическое волокно зафиксировано в корпусе и в защитной трубке, расположенной в штуцере корпуса. Отверстие в корпусе для оптического волокна расположено в выступе корпуса в котором выполнен закрытый паз для материала, фиксирующего оптическое волокно, соединяющийся с отверстием для размещения оптического волокна. В штуцере последовательно от корпуса выполнены паз для материала, фиксирующего оптическое волокно, и паз для материала, фиксирующего защитную трубку. На верхнюю поверхность основания нанесена тонкопленочная металлизация. Корпус заполнен сверхчистым химически инертным газом. Технический результат заключается в повышении стабильности выходных параметров и упрощении технологии производства. 2 н.п. ф-лы, 3 ил.

Изобретение относится к матрицам лазерных диодов, которые могут быть использованы как самостоятельные источники излучения, так и в качестве системы накачки твёрдотельных лазеров. Матрица светодиодов содержит теплопроводящее основание с нанесенной толстопленочной металлизацией, выполненной в виде дискретных контактных элементов, установленных на противоположных сторонах основания, и токоподводящих элементов, расположенных симметрично на противоположных сторонах основания. На дискретных контактных элементах установлены теплоотводы, на которых расположены линейки лазерных диодов. Электрические выводы матрицы выполнены в виде шунтирующих стержней линеек лазерных диодов. Технический результат заключается в уменьшении теплового сопротивления конструкции и в увеличении предельной выходной мощности. 2 н. и 3 з.п. ф-лы, 2 ил.

 


Наверх