Патенты автора ИСИМАРУ Итиро (JP)

Изобретение относится к области оптического приборостроения и касается спектроскопического измерительного устройства. Устройство включает в себя пропускающий оптический блок, линзу объектива, предназначенную для коллимации измеряемого луча и ввода пучка в пропускающий оптический блок, цилиндрическую линзу, детектор для детектирования распределения интенсивности интерференционного света и процессор для получения картины интерференции и выполнения преобразования Фурье. Пропускающий оптический блок состоит из первой плоской пропускающей части и второй клиновидной пропускающей части, расположенной рядом с первой пропускающей частью. Ось цилиндрической линзы параллельна линии пересечения входной поверхности первой пропускающей части и граничной поверхности между первой пропускающей частью и второй пропускающей частью. Технический результат заключается в уменьшении размеров устройства и повышении устойчивости к помехам. 6 з.п. ф-лы, 26 ил.

Изобретение относится к области оптического приборостроения и касается спектроскопического измерительного устройства. Устройство включает в себя разделяющую оптическую систему для разделения измеряемого луча на первый и второй измеряемые лучи, формирующую изображение оптическую систему для обеспечения интерференции первого и второго лучей, средство обеспечения непрерывного распределения разницы длины оптического пути между первым и вторым лучами, детектор для детектирования распределения интенсивности интерференционного света и процессор для получения картины интерференции и выполнения преобразования Фурье. Устройство также включает в себя формирующую изображение оптическую систему, расположенную между измеряемым объектом и разделяющей оптической системой таким образом, что обладает общей сопряженной плоскостью с разделяющей оптической системой. Кроме того, устройство содержит средства обеспечения периодичности, расположенные на сопряженной плоскости и предназначенные для обеспечения пространственной периодической модуляции измеряемых лучей. Технический результат заключается в уменьшении размеров устройства и повышении устойчивости к помехам. 9 з.п. ф-лы, 26 ил.

Изобретение относится к области измерения спектральных характеристик объекта, которые позволяют неинвазивно измерять биологические компоненты или оценивать дефекты полупроводника. Изобретение обуславливает вхождение измерительного света, излучаемого из объекта, подлежащего измерению, в блок неподвижных зеркал и блок подвижных зеркал и формирует свет, полученный интерференцией измерительного света, отраженного блоком неподвижных зеркал, и измерительного света, отраженного блоком подвижных зеркал. Одновременно с этим изменение интенсивности света, полученного интерференцией измерительного света, получается путем перемещения блока подвижных зеркал и интерферограмма измерительного света получается на основании этого изменения. В то же время обуславливается вхождение опорного света узкого диапазона длин волны, включенного в диапазон длин волны измерительного света, в блок неподвижных зеркал и блок подвижных зеркал и формируется свет, полученный интерференцией опорного света, отраженного блоком неподвижных зеркал, и опорного света, отраженного блоком подвижных зеркал. При этом блок подвижных зеркал перемещается для коррекции интерферограммы измерительного света на основании амплитуды изменения света, полученного интерференцией опорного света, и на основании разности фаз между измерительным светом, который имеет ту же длину волны, что и опорный свет в измерительном свете, и опорным светом, и на основании скорректированной интерферограммы получается спектр измерительного света. Изобретение позволяет с высокой точностью измерять спектральные характеристики объекта, подавляя влияние возмущений. 2 н. и 6 з.п. ф-лы, 11 ил.

Изобретение относится к области оптических измерений. Измерение оптических характеристик заключается в том, что линейно поляризованный свет направляют на образец S через поляризатор. Затем свет достигает блока 131 подвижных зеркал и блока 132 неподвижных зеркал фазовращателя 13 через первую поляризационную пластину 9 и вторую поляризационную пластину 11. Лучи, отразившиеся на этих блоках зеркал, проходят через анализатор 15 и с помощью линзы 17 формирования изображения формируют интерференционное изображение на светоприемной поверхности детектора 19. При этом разность длин оптического пути между пучком, отраженным на блоке 131 подвижных зеркал, и пучком, отраженным на блоке 132 неподвижных зеркал, непрерывно изменяется за счет перемещения блока 131 подвижных зеркал, и непрерывно изменяется интенсивность интерференционного изображения, зарегистрированная детектором 19, что позволяет получить синтезированную форму волны, аналогичную интерферограмме, которая подвергается преобразованию Фурье, что позволяет получить амплитуду относительно длины волны и разность фаз двулучепреломления относительно длины волны. 6 н. и 9 з.п. ф-лы, 22 ил.

 


Наверх