Патенты автора Фролов Илья Владимирович (RU)

Изобретение относится к микроэлектронике, а именно к контролю полупроводниковых интегральных схем (ИС). Сущность: на каждую ИС из репрезентативных выборок из каждой сравниваемой партии воздействуют электростатическими разрядами (ЭСР) разной полярности напряжением, равным удвоенному от допустимого по ТУ для данного типа ИС значения до наступления отказа ИС. На ИС последующих выборок из сравниваемых партий воздействуют ЭСР-потенциалом, увеличенным на определенную величину, например на 250 В, до наступления отказа ИС. Процедуру с увеличением потенциала ЭСР повторяют не менее двух раз. Затем строят зависимости усредненных по выборкам значений числа импульсов ЭСР до наступления отказа ИС от напряжения ЭСР. Партия ИС, у которой полученная зависимость будет лежать ниже, принимается более стойкой к ЭСР по сравнению с другой партией. Технический результат: повышение достоверности оценки стойкости партий ИС к ЭС. 1 ил., 1 табл.

Способ измерения внутреннего квантового выхода светодиода, согласно которому через светодиод пропускают электрический ток и при заданном значении постоянного тока из диапазона токов, соответствующих росту внутренней квантовой эффективности светодиода, измеряют мощность оптического излучения светодиода, при этом мощность оптического излучения светодиода измеряют при нескольких произвольно выбранных значениях электрического тока Ik, находящихся в диапазоне токов, соответствующих росту внутренней квантовой эффективности светодиода, полученную экспериментальную ватт-амперную характеристику Pk(Ik) аппроксимируют методом наименьших квадратов функцией вида по результатам аппроксимации определяют параметры m и q аппроксимирующей функции, и значение внутреннего квантового выхода η светодиода при произвольном значении тока в заданном диапазоне рассчитывают по формуле Способ направлен на уменьшение аппаратных затрат, трудоемкости и времени измерения, а также обеспечивает расширение функциональных возможностей способа. 2 ил.

Изобретение относится к технике измерения тепловых параметров полупроводниковых изделий (ППИ). Предложен способ измерения теплового сопротивления переход-корпус и тепловой постоянной времени переход-корпус полупроводникового изделия, отличающийся тем, что с целью расширения функциональных возможностей и уменьшения погрешности измерения длительность tи импульса греющей мощности устанавливают равным 3, где - приблизительное (оценочное) значение тепловой постоянной времени переход-корпус полупроводникового изделия, дополнительно измеряют приращения температуры перехода в моменты времени t1≈ и t2=2t1, значение теплового сопротивления переход-корпус и уточненное значение тепловой постоянной времени переход-корпус. Технический результат состоит в расширении функциональных возможностей способа и в снижении погрешности измерения теплового сопротивления переход-корпус и тепловой постоянной времени переход-корпус полупроводникового изделия. 4 ил.

Изобретение относится к испытаниям интегральных схем (ИС) и может быть использовано для определения стойкости партий ИС к электростатическому разряду (ЭСР) при изготовлении радиоэлектронной аппаратуры. Сущность: проводят механические испытания ИС, допустимые по техническим условиям, путем многократных ударов на выводы ИС. После механических испытаний произвольные выборки из партий ИС разделяют по крайней мере на три группы ИС, на ИС каждой группы воздействуют ЭСР до наступления отказа ИС и определяют число поданных разрядов на ИС. На одну группу ИС подают ЭСР напряжением не менее удвоенного предельно допустимого по техническим условиям. На другую группу ИС подают ЭСР повышенным напряжением на 100-300 В по сравнению с первой группой. Далее опять повышают напряжение ЭСР на 100-300 В для воздействия на следующую группу ИС в выборке. Затем определяют усредненное число воздействий ЭСР на ИС каждой группы. По наибольшему значению усредненного числа воздействий ЭСР оценивают стойкость партии ИС к ЭСР как более высокую. Технический результат: повышение достоверности оценки сравнительной надежности ИС. 1 табл., 2 ил.

Изобретение относится к технике контроля тепловых характеристик светодиодов и может быть использовано для контроля качества монтажа кристаллов светодиодов на монтажную пластину, в том числе светодиодов в составе светодиодных матриц и модулей. Способ измерения теплового сопротивления переход-корпус светодиода, состоящий в пропускании через светодиод импульса греющего тока заданной силы Im и длительности tи, примерно равной тепловой постоянной времени τТп-к переход-корпус светодиода, и в измерении яркости излучения светодиода люксметром, отличающийся тем, что сразу после включения импульса тока измеряют значение яркости E0 излучения светодиода, через время tи/2 после включения импульса тока измеряют прямое напряжение Um на диоде и значение яркости Е1 излучения, а через время tи после включения импульса тока - значение яркости Е2 излучения светодиода и тепловое сопротивление переход-корпус светодиода определяют по формуле где - греющая мощность, рассеиваемая светодиодом, ξ - среднее значение квантовой эффективности и средний коэффициент температурного спада интенсивности излучения данного типа светодиодов при заданном токе соответственно b1=ln(E1/E0); b2=ln(Е2/Е0). 1 ил.

Изобретение относится к технике измерения параметров полупроводниковых светоизлучающих гетероструктур и светодиодов на их основе и может быть использовано для контроля качества светодиодов на основе GaN и их разделения по уровню энергетической эффективности. Сущность способа состоит в том, что возбуждение электролюминесценции светодиода осуществляют при двух значениях постоянного электрического тока I1 и I2, соответствующих диапазону роста на токовой зависимости внутренней квантовой эффективности светодиода, причем I1<I2, при каждом из этих значений тока измеряют соответственно полные мощности P1 и Р2 оптического излучения светодиода, затем при каждом из этих значений тока через светодиод дополнительно пропускают переменный гармонический ток малой амплитуды Im<I1 и измеряют соответственно значения ƒ3∂Б1 и ƒ3∂Б2 граничной частоты модуляции электролюминесценции и значение внутреннего квантового выхода η светодиода при токе I1 и I2 рассчитывают по предложенным формулам. Преимущества изобретения состоят в уменьшении аппаратных затрат, трудоемкости и времени измерения при реализации способа. 1 ил.

Изобретение относится к технике измерения динамических характеристик светодиодов и полупроводниковых светоизлучающих структур и может быть использовано для диагностики однородности светоизлучающих гетероструктур (СГС) и их характеристики по динамическим свойствам. Способ измерения граничной частоты электролюминесценции локальных областей светоизлучающей гетероструктуры, при котором через светоизлучающую гетероструктуру пропускают последовательность импульсов электрического тока скважностью 2 и начальной частотой следования несколько килогерц, частоту следования импульсов тока постепенно увеличивают и при каждом заданном значении Fi частоты следования импульсов тока регистрируют цифровой камерой излучение с поверхности светоизлучающей гетероструктуры, полученные оцифрованные изображения сохраняют в памяти компьютера, увеличение частоты следования импульсов тока прекращают, когда средний уровень яркости изображения, регистрируемого цифровой камерой, снизится в 1,5 раза относительно значения, измеренного на начальной частоте, на изображении светоизлучающей гетероструктуры выделяют локальную область и находят k-e изображение, на котором средняя яркость выделенной области светоизлучающей гетероструктуры в раз меньше исходной средней яркости, и определяют для k-го изображения граничную частоту ƒ3дБ=Fk электролюминесценции выбранной локальной области светоизлучающей гетероструктуры, а при отсутствии точного значения в отношении последующих изображений граничную частоту электролюминесценции локальной области светоизлучающей гетероструктуры определяется путем интерполяции по формуле. Технический результат- повышение информативности диагностики однородности светоизлучающих гетероструктур по локальным динамическим параметрам. 1 ил.

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый n-элементный двухполюсник подают напряжение в виде случайного сигнала, имеющего равномерный амплитудный спектр в диапазоне частот, перекрывающем диапазон частот, за пределами которого модуль импеданса двухполюсника можно считать не зависящим от частоты с заданной погрешностью. На образцовом резисторе, включенном последовательно с двухполюсником, измеряют напряжение, пропорциональное току двухполюсника. По двум параллельным каналам записывают в память ЭВМ временные реализации сигналов, подаваемого на двухполюсник и снимаемого с образцового резистора, после чего рассчитывают спектральные плотности напряжения и тока, рассчитывают частотные зависимости модуля и фазы импеданса двухполюсника, определяют характерные частоты. Составляют и решают систему из n уравнений относительно параметров эквивалентной схемы замещения n-элементного линейного двухполюсника. Технический результат заключается в сокращении времени измерения параметров эквивалентных схем замещения многоэлементных линейных двухполюсников. 2 ил.

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева p-n-перехода диода протекающим током в процессе измерения. Используется известный способ измерения последовательного сопротивления базы диода, в котором через диод пропускают прямой ток различной величины и измеряют падение напряжения на диоде при этих значениях прямого тока. Искомую величину последовательного сопротивления базы диода определяют по известным формулам. Для достижения технического результата прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов большой скважности и амплитудой I1, kI1, 2kI1 и измеряют пиковое значение падений напряжения U1, U2, U3 на диоде при пропускании этих импульсов тока. Последовательное сопротивление базы определяется по формуле где ΔU32=U3-U2; ΔU21=U2-U1; ν=ln 2/b; b=ln k. 3 ил.

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле R д и ф | I и = U m / M I и . Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.

 


Наверх