Патенты автора Кирющенко Игорь Георгиевич (RU)

Изобретение относится к области измерительной техники и преимущественно предназначено для задач океанографии. Электрод сравнения согласно изобретению содержит корпус с электролитическим ключом, заполненные электролитом, сообщающимся с исследуемой средой через ключ, расположенную в корпусе потенциалообразующую ячейку, вывод которой является выходом устройства, и эластичную электролитическую камеру, заполненную электролитом, сообщающимся с электролитом корпуса. При этом эластичная электролитическая камера имеет заданный объем и на ней установлен груз. Электрод дополнительно содержит нормирующий капилляр, который установлен на пути истечения электролита из эластичной камеры в исследуемую среду. Изобретение обеспечивает пассивную стабилизацию расхода истечения электролита через ключ электрода сравнения при обеспечении заданной скорости истечения электролита. 3 ил.

Изобретение относится к технике измерения содержания растворенного газа в жидких и газовых средах, предназначено в основном для применения в океанографической аппаратуре и может быть использовано в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - обеспечение основных метрологических характеристик устройства - чувствительность и долговременная стабильность. Дополнительный технический результат - экономия материала мембраны. Сущность: согласно первому варианту исполнения (фиг. 1) барокомпенсированный электрохимический измерительный газоанализатор содержит корпус (1), герметичную камеру (12), которая имеет капилляр (13) и заполнена электролитом, катод (16) и анод (17), или анодную систему, контактирующие с электролитом и подключенные к регистратору (18) в виде преобразователя катодного тока в выходной сигнал. Катод (16) расположен на выходе капилляра (13) во внешнюю среду. Катод (16) и капилляр (13) отделены от внешней среды селективно-проницаемой мембраной (6) в форме круга. Мембрана (6) притянута к прикатодной поверхности газоанализатора и зафиксирована на ней по замкнутой линии крышкой (7), соединенной с накидной гайкой (10). Газоанализатор содержит барокомпенсатор (11) в виде эластичного элемента, отделяющего электролит в камере (12) от внешней среды. При этом капилляр (13) выполнен в проходном элементе (3). Один конец проходного элемента (3) с уплотнением (2) жестко или с возможностью перемещения установлен в корпусе (1). Другой конец проходного элемента (3) с уплотнением (4) пропущен через отверстие втулки (5). Втулка (5) по резьбе установлена в крышке (7), установленной с уплотнением (9) в накидной гайке (10). Накидная гайка (10) по резьбе установлена на проходном элементе (3). Краевая часть мембраны (6) зажата между заплечиком крышки (7) и торцевой поверхностью втулки (5). Анод (17) или анодная система расположены в капилляре (13) или в камере (12). Камерой (12) является пространство, образованное проходным элементом (3) и корпусом (1). Это пространство отделено от внешней среды барокомпенсатором (11) в виде эластичной стенки, например резинового чулка, закрепленного на корпусе (1) и проходном элементе (3). Пространство, образованное проходным элементом (3), втулкой (5), крышкой (7) и накидной гайкой (10), заполнено электроизолирующей жидкостью (15), например маслом. Это пространство по резьбе накидная гайка (10) - проходной элемент (3) сообщается с пространством, которое образовано барокомпенсатором (11), корпусом (1) и накидной гайкой (10), заполнено электроизолирующей жидкостью (15) и отделено от внешней среды дополнительным барокомпенсатором (14) в виде эластичной стенки, например, резинового чулка, закрепленного на корпусе (1) и накидной гайке (10). Второй вариант изобретения (фиг. 2) отличается от первого тем, что проходной элемент (3) с уплотнением (2) и с возможностью перемещения установлен в корпусе (1) и с уплотнением (4) пропущен через отверстие втулки (5). Втулка (5) имеет радиальные отверстия. Втулка (5) одним концом с уплотнением (6) установлена с возможностью перемещения на корпусе (1), а другим концом по резьбе установлена в крышке (8). Крышка (8) установлена с уплотнением (10) в накидной гайке (11), которая по резьбе установлена на корпусе (1). Краевая часть мембраны (7) зажата между заплечиком крышки (8) и торцевой поверхностью втулки (5). Анод (18) или анодная система расположены в капилляре (14) или в камере (13). Камерой (13) является пространство, образованное проходным элементом (3), втулкой (5) с ее радиальными отверстиями и корпусом (1). Камера (13) отделена от внешней среды барокомпенсатором (12) в виде эластичной стенки, герметизирующей радиальные отверстия втулки (5), например в виде резинового чулка, закрепленного на втулке (5). Накидная гайка (11) имеет радиальные отверстия, расположенные вблизи радиальных отверстий втулки (5). Пространство, образованное барокомпенсатором (12), втулкой (5), крышкой (8), накидной гайкой (11) с ее радиальными отверстиями и корпусом (1), заполнено электроизолирующей жидкостью (16), например маслом. Это пространство отделено от внешней среды дополнительным барокомпенсатором (15) в виде эластичной стенки, герметизирующей радиальные отверстия накидной гайки (11) и резьбовое соединение корпус (1) - накидная гайка (11), например, в виде резинового чулка, закрепленного на корпусе (1) и накидной гайке (11).

Изобретение относится к технике измерений гидрофизических и гидрохимических параметров водных сред в океанографических, гидрографических и экологических глубоководных исследованиях и может быть использовано в различных технологических процессах, связанных с контролем параметров жидкости, находящейся в условиях высокого давления. Техническим результатом изобретения является расширение диапазона рабочего давления ПИП, что повышает надежность работы ПИП и достоверность полученной от него информации. Дополнительным техническим результатом изобретения является упрощение технологии сборки, т.к. особенности барокомпенсации в заявленном ПИП допускают наличие в жидкости, наполняющей корпус, пузырей воздуха. Сущность: барокомпенсированный первичный измерительный преобразователь (ПИП) с твердотельным чувствительным элементом содержит жестко соединенные хвостовик и цилиндрический корпус, полость которого выполнена цилиндрической и заполнена жидкостью. Жидкость герметично отделена от внешней среды барокомпенсатором и жестко установленным в корпусе, соосно ему чувствительным элементом цилиндрической формы, торцевая поверхность которого контактирует с этой жидкостью. Барокомпенсатор выполнен в виде цилиндрической втулки, установленной через уплотнение подвижного контакта в полости корпуса, на его выходе. В осевом отверстии втулки установлен, также через уплотнение подвижного контакта, чувствительный элемент. Вывод чувствительного элемента электрически изолирован и с герметизацией выведен из ПИП через его хвостовик. 2 ил.

Изобретение относится к технике измерений гидрохимических параметров водных сред в океанографических, гидрографических и экологических исследованиях и может быть использовано в различных технологических процессах, связанных с контролем концентрации (активности) ионов растворенных веществ. Технический результат - повышение надежности работы электрода и, улучшение его эксплуатационных качеств. Сущность: электрод содержит корпус (1) в виде цилиндра, прикрепленный через уплотнение (2) к хвостовику (3). Внутри корпуса (1) через уплотнение (4) подвижного контакта установлен контейнер (5), вьшолненный в виде стакана с фланцем. В полости контейнера (5) находится потенциалообразующий элемент, который состоит из серебряной проволоки (6) и обволакивающей ее пасты AgCl/KCl (7). Проволока (6) с уплотнением выведена через осевое отверстие, выполненное в днище контейнера (5). Контейнер (5) закрыт крышкой (8), в которой выполнено осевое отверстие (9), в которое установлен фильтр. На контейнер (5) герметично установлен сильфон (10), заполненный раствором КС1 (11). Другой своей стороной сильфон (10) герметично закреплен на втулке солевого мостика, которая выполнена разборной и имеет широкую часть - фланец (12) с осевым, отверстием, и узкую часть - стержень (13) с осевым сквозным капиллярньш отверстием (14), который вкручен через уплотнение (15) в осевое отверстие фланца (12). На внешней образующей фланца (12), перпендикулярно его осевой линии, установлены штифты (16). Вся конструкция установлена в стакан (17), вьшолненный с осевым отверстием в дне - под стержень (13), продольными прорезями на его образующей - для штифтов (16), и резьбой по его внешней поверхности. На дне стакана (17) установлена подпирающая торец фланца (12) пружина (18). В осевое отверстие хвостовика (3) разъем (21) установлен через уплотнение (22). Вывод проволоки (6) припаян к выводу герморазъема (21) проводником (23) в изоляции. Полость корпуса (1), образованная торцом контейнера (5) и торцом хвостовика (3), заполнена электроизолирующей жидкостью (24). 1 ил.

Изобретение относится к области автоматики и электроники как средство для управления физическими процессами и может быть использовано в технологиях электрохимических измерений при экологических и океанографических исследованиях. Технический результат - уменьшение искажения сигнала, снимаемого с заземленной нагрузки при контроле управляемого тока, что повышает точность преобразования входного напряжения в выходной ток. Дополнительный технический результат - упрощение устройства. Сущность: устройство содержит первый резистор R1, первый вывод которого является входом устройства. Второй вывод R1 подключен к первому выводу второго резистора R2 и к инверсному входу операционного усилителя ОУ. Выход ОУ подключен ко второму выводу R2 и к первому выводу третьего резистора R3. Второй вывод R3 подключен к первому выводу четвертого резистора R4, второй вывод которого заземлен. Устройство содержит опорный резистор Roп, первый вывод которого является выходом устройства и к этому выводу подключен неинверсный вход ОУ. Второй вывод Rоп через элемент-повторитель Π подключен ко второму выводу R3. 4 ил.

Изобретение относится к технике измерений гадрохимических параметров водных сред в океанографических, гидрографических и экологических исследованиях и может быть использовано в различных технологических процессах, связанных с контролем концентрации (активности) сульфид-ионов растворенных веществ. Технический результат изобретения - повышение точности определения профиля концентрации растворенного сероводорода и его разрешения без применения при этом кассеты батометров. Сущность: по первому варианту изобретения гидролого-гидрохимический зонд для определения профиля концентрации растворенного сероводорода включает в себя погружаемое устройство (ПУ), содержащее, например, пять измерительных преобразователей (1-5), в том числе преобразователь (1) показателя концентрации растворен-. ног о сероводорода. Выход каждого из измерительных преобразователей подключен соответственно к одному из входов адаптера (6), выход которого подключен к входу контроллера системного (10), выход которого подключен к входу блока питания, синхронизации и связи (11 ), выход которого через грузонесущий кабель связи (ГКС) подключен к входу бортового устройства (БУ). БУ содержит блок кабельной связи (12), у которого вход является входом БУ, а выходы подключены к соответствующим входам средства отображения профиля концентрации растворенного сероводорода (13), выход которого является выходом зонда. Выход аддитивного смесителя (7) соединен с шестым входом адаптера (6). Аддитивный смеситель (7) имеет (n+1) входов, где n -.количество факторов, влияющих на диссоциацию растворенного в воде сероводорода, которое определяется заданной погрешностью измерения. В данном примере n=2, поэтому аддитивный смеситель (7) имеет три входа, первый вход соединен с выходом преобразователя (1) показателя концентрации растворенного сероводорода, второй вход через формирователь (8) сигнала ошибки от одного из факторов, влияющих на диссоциацию растворенного в воде сероводорода - от рН, соединен с выходом измерительного преобразователя (2), сигнал от которого отображает фактор рН. Третий вход аддитивного смесителя (7) соединен с выходами нескольких измерительных преобразователей, сигналы от которых в совокупности отображают один из факторов, влияющих на диссоциацию растворенного в воде сероводорода (соленость) - соединен с выходами измерительного преобразователя (3) температуры, преобразователя (4) электропроводимости и преобразователя (5) давления. Зонд по второму варианту содержит измерительные преобразователи (1-5), входы которых соединены с пятью входами адаптера (6), выход которого подключен к входу контроллера системного (7), выход которого подключен к входу блока питания, синхронизации и связи (8), выход которого через ГКС подключен к входу БУ, которое содержит блок кабельной связи (9), у которого вход является входом БУ, а выходы, соответствующие выходам измерительных преобразователей (1-5), подключены к -входам средства отображения профиля концентрации растворенного сероводорода (10), выход которого является выходом зонда. БУ, как ПУ в первом варианте зонда, содержит аддитивный смеситель (11) с (n+1) входами, где n - количество факторов, влияющих на диссоциацию растворенного в воде сероводорода, которое определяется заданной погрешностью измерения. В данном случае п=2. Выход аддитивного смесителя (11) соединен с дополнительным входом средства отображения профиля концентрации растворенного сероводорода (10). Первый вход аддитивного смесителя (11) соединен с выходом блока (9) кабельной связи, соответствующим сигналу от преобразователя (1) показателя концентрации растворенного сероводорода, второй вход аддитивного смесителя (11) через формирователь (12) сигнала ошибки от фактора рН, влияющего на диссоциацию растворенного в воде сероводорода, соединен с выходом блока кабельной связи (9), соответствующим измерительному преобразователю 2, сигнал от которого отображает фактор рН. Третий вход аддитивного смесителя (11) через формирователь (13) сигнала ошибки от фактора солености, влияющего на диссоциацию растворенного в воде сероводорода, соединен с несколькими выходами блока кабельной связи (9), соответствующим нескольким измерительным преобразователям, сигналы от которых в совокупности отображают фактор солености - в данном примере с выходами, соответствующими преобразователю (3) температуры, преобразователю (4) электропроводимости и преобразователю (5) давления. 2 н. п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и преимущественно предназначено для исследования процессов, происходящих в среде океанов и других водоемов. Технический результат изобретения - повышение стабильности потенциала электрода и повышение надежности работы за счет устранения факторов, создающих шунтирование сопротивления изоляции между электролитическим контактом и электролитическим ключом электрода. Сущность: проточный вспомогательный электрод содержит заполненную электролитом камеру 7, в которой создается избыточное давление подпружиненной втулкой 9. Электролитическим ключом электрода является выполненный во втулке 9 капилляр 10, через который электролит вытекает из камеры 7 в исследуемую среду. Корпус 1 электрода содержит ячейку 5 электролитического контакта, которая посредством канала 8 сообщается с электролитом камеры. Камера 7 образована соединением цилиндр-поршень, при этом обеспечены герметизация и электроизоляция электролита, заполняющего камеру. Согласно первому варианту изобретения (фиг. 1) цилиндр выполнен в корпусе 1, а втулка 9 в виде поршня установлена в этот цилиндр посредством, например, масляного затвора 16. Отличие второго варианта (фиг. 2) от первого заключается в том, что цилиндр выполнен во втулке 9, а корпус 1 в виде поршня установлен в этот цилиндр. 2 н. п. ф-лы, 2 ил.

Изобретение относится к технике измерений гидрохимических параметров водных сред в океанографических, гидрографических и экологических исследованиях и может быть использовано в различных технологических процессах, связанных с контролем концентрации (активности) сульфид-ионов растворенных веществ. Технический результат - уменьшение погрешности измерения концентрации растворенного сероводорода и повышение степени автоматизации измерений за счет возможности учитывать влияние факторов среды, например, рН, солености, на степень диссоциации растворенного сероводорода, не осуществляя в процессе измерений градуировку прибора. Сущность: среду зондируют преобразователем, содержащим ионоселективный электрод, реагирующий на ионы двухвалентной серы, и электрод сравнения. Преобразуют полученные текущие потенциалы ионоселективного электрода, по отношению к потенциалу электрода сравнения, в выходные коды. Осуществляют градуировку преобразователя. По полученным значениям выходных кодов с использованием полученных коэффициентов c1 и с0 градуировочного уравнения определяют текущие значения показателя концентрации растворенного сероводорода, по которым определяют текущие значения CSVi концентрации растворенного сероводорода. При этом преобразователь градуируют в буферных растворах с разными заданными значениями концентрации растворенного сероводорода и с одинаковыми значениями каждого из n заданных факторов Фn влияющих на диссоциацию растворенного сероводорода. По полученным кодам, соответствующим концентрациям растворенного сероводорода в каждом из буферных растворов, получают коэффициенты c1 и с0 градуировочного уравнения. Затем используют растворы с разными заданными значениями Фnz каждого из n факторов влияния Фn где n=1, 2,..., m, и с одним и тем же значением CSV концентрации растворенного.сероводорода. Определяют выходные коды Nnz, соответствующие значениям Фnz, где число z задается для каждого из факторов влияния Фn в зависимости от допустимой погрешности преобразования. По полученным значениям Nnz выходных кодов определяют z-тые значения Fz(Фnz) функции влияния Fn(Фn) для каждого из факторов влияния Фn по формуле По значениям Fz(Фnz) функции влияния и значениям Фnz влияющего фактора выбирают вид аппроксимирующей функции Fn(Фn) с определением коэффициентов функции влияния для каждого из факторов влияния Фn, используя один из алгоритмов для расчета линии тренда. Во время зондирования среды измеряют текущие значения Фni каждого из и факторов влияния на диссоциацию растворенного сероводорода и определяют текущие значения CSVi концентрации растворенного сероводорода по формуле где Ni - текущие значения выходного кода преобразователя. Или дополнительно определяют контрольное значение CSVконтр концентрации растворенного сероводорода на глубине, где значение CSVi максимально и равно CSVimax, способом, принятым за достоверный, например, с помощью прямого химического анализа пробы среды, вычисляют коэффициент поправки КП по формуле и определяют текущие значения CSVi концентрации растворенного сероводорода с учетом поправки по формуле 3 ил.

Изобретения относятся к технике измерения содержания растворенного газа в жидких и газовых средах, предназначены в основном для применения в океанографической аппаратуре и могут быть использованы в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - упрощение обеспечения основных метрологических характеристик устройства - чувствительности и показателя инерции. Дополнительный технический результат - надежное обеспечение герметизации электролитической камеры и экономия материала мембраны Сущность: электрохимический газоанализатор по первому варианту (фиг. 1) содержит электролитическую камеру 1 с капилляром 2, выходящим на прикатодную поверхность газоанализатора. Камера и капилляр заполнены электролитом. Устройство содержит анод 3, непосредственно контактирующий с электролитом камеры, и катод 4, который установлен на поверхности газоанализатора в зоне выхода капилляра. От внешней среды катод и капилляр отделяет селективно-проницаемая мембрана 5 в форме круга, которая притянута к катоду и капилляру и зафиксирована на прикатодной поверхности газоанализатора. Мембрана притянута и зафиксирована крышкой 6 в виде перевернутого стакана с осевым отверстием в дне, которая соединена с накидной гайкой 7. Мембрана притянута посредством своей краевой части, которая зажата между дном крышки и уплотнительным кольцом 8, которое расположено в полости крышки и имеет заданные модуль упругости и толщину. Фиксирование мембраны обеспечивается крышкой по замкнутой линии ребром в форме неострого угла. Проводники 9, 10 предназначены для съема выходного сигнала с анода 3 и катода 4. Проводники подключены к регистратору 11 выходного сигнала газоанализатора. Второй вариант изобретения (фиг. 2) отличается от первого тем, что функции притягивания мембраны и ее фиксации выполняют разные элементы. Как и по - первому варианту, электрохимический газоанализатор содержит электролитическую камеру 1 с капилляром 2, анод 3, катод 4, селективно-проницаемую мембрану 5 и крышку 6, фиксирующую мембрану на прикатодной поверхности газоанализатора по замкнутой линии ребром. При этом в месте взаимодействия с мембраной крышка имеет низкий коэффициент трения. Устройство содержит накидную гайку 7. В полости крышки б размещен притягивающий элемент 8 в виде перевернутого стакана с осевым отверстием в дне. Крышка 6 и притягивающий элемент 8 соединены подвижно. Накидная гайка 7 соединена с притягивающим элементом 8. В полости элемента 8 расположено уплотнительное кольцо 9 с заданными модулем упругости и высотой. Мембрана 5 притянута к катоду и капилляру элементом 8 посредством гайки 7 за счет того, что краевая часть мембраны зажата между дном притягивающего элемента и уплотнительным кольцом 9. Проводники 10, 11 снимают выходной сигнал с анодной системы и катода и подключены к регистратору 12 выходного сигнала газоанализатора. В третьем варианте изобретения (фиг. 3) функции притягивания мембраны и е£ фиксации также выполняют разные элементы. Отличия этого устройства от двух предыдущих заключаются в следующем: газоанализатор содержит электролитическую камеру 1 с капилляром 2, анод 3, катод 4, селективно-проницаемую мембрану 5 и крышку 6, фиксирующую мембрану на прикатодной поверхности газоанализатора по замкнутой линии. Устройство содержит накидную гайку 7, которая размещена в полости крышки 6 и соединена с ней подвижно. В полости накидной гайки 7 размещены притягивающий элемент 8 в виде шайбы, которая установлена на дне накидной гайки, и уплотнительное кольцо 9 с заданными модулем упругости и высотой. При этом элемент 8 в месте взаимодействия с гайкой 7 имеет низкий коэффициент трения. Мембрана притянута элементом 8, при этом краевая часть мембраны зажата между элементом 8 и уплотнительным кольцом 9. Проводники 10, 11 снимают выходной сигнал с анодной системы и катода и подключены к регистратору 12 выходного сигнала газоанализатора. 3 н. и 2 з. п. ф-лы, 3 ил.

 


Наверх