Патенты автора Фролов Михаил Михайлович (RU)

Изобретение относится к способу управления беспилотным летательным аппаратом малого класса. Для управления беспилотным летательным аппаратом формируют импульсное модулированное вращающимся растром оптическое излучение с широкой диаграммой направленности, перемещающееся в пространстве, излучают его в направлении беспилотного летательного аппарата, регистрируют его матричным фотоприемником с изменяющейся диаграммой направленности, установленным на беспилотном летательном аппарате, вычисляют линейную скорость вращения растра и длительность модулированного оптического излучения, с использованием которых формируют команды управления беспилотным летательным аппаратом, передают команды управления на исполнительное устройство. Обеспечивается повышение эффективности управления беспилотным летательным аппаратом, повышение помехозащищенности и помехоустойчивости. 5 ил.

Изобретение относится к средствам обеспечения скрытности вооружения и военной техники (ВВТ) от оптико-электронных средств разведки. Оно может быть использовано для имитации вибрационных колебаний поверхности ложных целей и макетов ВВТ при их разведке лазерными локационными станциями, а также защиты от высокоточного оружия, оснащенного полуактивными лазерными головками самонаведения. Задачей предлагаемого изобретения является разработка устройства имитации вибрационных колебаний поверхности ложной цели, имитирующих работу двигателя реального образца ВВТ, и за счет этого повышение эффективности ложных целей или макетов ВВТ. Технический результат, на достижение которого направлено изобретение, заключается в повышении вероятности принятия ложной цели за имитируемое ВВТ. Указанный результат достигается тем, что в устройство имитации вибрирующих объектов, состоящее из блока управления вибрацией, последовательно соединенного с вибромотором, дополнительно введены: сферическое зеркало, подвижная в двух плоскостях пластина, прозрачный защитный обтекатель, к основанию которого с помощью опор с пружинами закреплена подвижная в двух плоскостях пластина, на которой закреплены вибромотор и сферическое зеркало. 1 ил.

Изобретение может быть использовано в системах лазерной локации для определения местонахождения объектов в пространстве. Сущность изобретения заключается в осуществлении пространственной обработки двух последовательно получаемых матричным фотоприемным устройством изображений принятых отраженных излучений, имеющих общую перекрываемую область. В приемо-передающем модуле лазерного локационного средства используют матричное фотоприемное устройство, с помощью которого формируют изображения принятых оптических излучений. Далее сравнивают параметры двух последовательно формируемых изображений и определяют пространственные параметры области равных параметров двух последовательно формируемых изображений. По значениям пространственных параметров области равных параметров двух последовательно формируемых изображений вычисляют угловые координаты смещения ориентации луча лазерного локационного средства (ЛЛС) относительно угловых координат ориентации лазерного локационного средства, полученных при формировании первого из двух последовательно формируемых изображений по угловым координатам ориентации передающего модуля ЛЛС, формирующего оптическое излучение. Определяют угловые параметры ориентации луча лазерного локационного средства, как сумму угловых параметров ориентации луча лазерного локационного средства, полученных при формировании первого из двух последовательно формируемых изображений и угловых параметров смещения ориентации луча лазерного локационного средства. Техническим результатом является повышение эффективности определения положения лазерного луча в пространстве. 2 ил.

Способ повышения разрешения изображения заключается в приеме оптического излучения матричным фотоприемником (МФПУ), измерении и запоминании параметров выходных сигналов фоточувствительных элементов (ФЧЭ) МФПУ и формировании по их значениям изображения. При этом одновременно по всем ФЧЭ МФПУ последовательно закрывают участки фоточувствительной поверхности каждого ФЧЭ МФПУ и измеряют параметры выходного сигнала каждого ФЧЭ МФПУ. Значения параметров выходного сигнала, соответствующих закрытому участку, определяют путем вычитания значений параметров выходного сигнала, полученных при его закрытии, из запомненных значений параметров выходного сигнала в открытом состоянии. Технический результат заключается в повышении разрешающей способности оптико-электронных средств, формирующих изображение объектов. 2 ил.

Изобретение относится к области оптических измерений и касается способа определения угловых координат на источник направленного оптического излучения. Способ включает в себя привязку положения фоточувствительных элементов матричного фотоприемника оптико-электронного координатора к декартовой системе координат, прием излучения, выделение не менее шести фотоэлементов матричного фотоприемника, сигналы на выходе которых равны между собой, определение их координат и вычисление по их значениям угла места и азимута источника излучения. Кроме того, при проведении измерений определяют суммарный сигнал S1 выделенных шести фотоэлементов, осуществляют наклон плоскости матричного фотоприемника по углу места в направлении его увеличения, повторно определяют суммарный сигнал S2 выделенных шести фотоэлементов и сравнивают полученные значения сигналов S1 и S2. Если S1>S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 0° до 90°. Если S1<S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 90° до 180°. Технический результат заключается в снятии ограничений на неоднозначность определения угла места. 2 ил.

Способ однопозиционного определения угловых координат заключается в применении в качестве фотоприемного устройства матричного фотоприемника, осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина. В результате суперпозиции сигнальной волны и волны гетеродина на поверхности МФП формируется изображение в виде интерференционных полос. По ширине интерференционных полос и угла их наклона определяют угловые координаты источника лазерного излучения. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности определения направления на источник лазерного излучения. 2 ил.

Изобретение относится к средствам обеспечения скрытности наземных видов вооружения и военной техники (ВВТ) от средств разведки видимого, радиолокационного и инфракрасного диапазона. Задачей предлагаемого изобретения является реализация в комбинированной ложной цели имитации работы двигателя ВВТ и повышение за счет этого эффективности имитации. Технический результат, на достижение которого направлено изобретение, заключается в повышении вероятности принятия ложной цели за имитируемое ВВТ и, как следствие, снижение вероятности обнаружения и поражения истинного ВВТ. Указанный результат достигается тем, что в комбинированной ложной цели, выполненной в виде полномасштабного надувного макета ВВТ, имеющего радиоотражающее покрытие и маскирующую раскраску, которая содержит источник теплового излучения, выполненный в виде вмонтированных в материал ложной цели электрических нагревателей, терморегулятор и блок управления терморегулятором, дополнительно введены блок управления вибрацией и вмонтированные в материал ложной цели под электрические нагреватели вибромоторы, входы которых соединены с выходом блока управления вибрацией. В соответствии с заложенным в блок управления вибрацией алгоритмом и хранящимися в нем вибрационными изображениями различных образцов ВВТ на его выходе генерируется сигнал, обеспечивающий управление работой вибромоторов и требующуюся интенсивность вибрации. При обнаружении средствами разведки комбинированной ложной цели она с высокой степенью вероятности будет приниматься за имитируемый объект (образец ВВТ), что обеспечит скрытие истинного объекта. Этим и достигается цель изобретения. 1 ил.

Изобретение относится к области связи, а именно к топологии самоорганизующихся сетей связи для передачи конфиденциальной информации между различными электронными устройствами. Техническим результатом является повышение защищенности передаваемых в иерархической сети связи данных без существенного снижения скорости передачи информации. Этот результат достигается благодаря тому, что осуществляются следующие действия: в каждый узел уровня перехода иерархической сети связи дополнительно вводят по P заранее незадействованных программно-технических средств защиты информации; задают иерархическую сеть связи в виде ориентированного связного графа без петель и параллельных ребер, топология которого представляется в виде двух матриц инцидентности прямого и обратного потока; формируют дискретную оптимизационную задачу структурно-функционального синтеза по критерию: минимум невязки между требуемыми и реальными значениями вероятности несанкционированного доступа злоумышленника к данным через узлы уровня доступа и максимум пропускной способности в узлах уровня доступа к информационным ресурсам узлов уровня ядра; сформированную задачу сводят к непрерывной путем введения дополнительных идемпотентных ограничений на целочисленность, которую в последующем решают с учетом ограничений на инцидентность узлов уровня доступа к одному ребру графа градиентным релаксационным методом с применением метода штрафных функций. 5 ил.

 


Наверх