Патенты автора ФЕДЯНИН Андрей Анатольевич (RU)

Изобретение может быть использовано в методах рентгеновской микроскопии, высокоразрешающей томографии, спектроскопии, флуоресцентной спектрометрии для решения задач, требующих фокусировки, коллимации или сбора рентгеновского излучения. Технический результат - уменьшение фокусного расстояния рентгеновской линзы при уменьшении ее геометрических размеров за счет обеспечения усадки линзы в процессе пиролиза, с уменьшением радиуса кривизны рабочей поверхности линзы, а также повышение устойчивости линзы к рентгеновскому излучению. Достигается тем, что методом двухфотонной литографии посредством нанесения на подложку фоторезиста с последующим ее экспонированием обеспечивается печать структуры сфокусированным лазерным излучением в режиме двухфотонной литографии и проявкой экспонированной структуры. После проявки проводят высокотемпературный отжиг структуры в инертной атмосфере, для чего обеспечивают ее нагрев до температуры отжига, выдержку и охлаждение. При этом нагрев и охлаждение ведут со скоростью, не превышающей 30°С/мин. 3 з.п. ф-лы, 2 табл., 1 пр., 5 ил.

Изобретение относится к области измерительной техники и касается интегрального оптического сенсора для определения наличия примесей в газовоздушных средах. Сенсор включает в себя размещенные на подложке из оптически прозрачного диэлектрического материала с коэффициентом преломления N1 элементы ввода и вывода излучения и чувствительный элемент в виде волновода, также выполненный из оптически прозрачного диэлектрического материала с коэффициентом преломления N2, где N2>N1. Чувствительный элемент представляет собой дискретный волновод в виде цепочки Ми-резонансных субволновых наночастиц, расположенных на субволновом расстоянии друг от друга. Элементы ввода и вывода излучения выполнены в виде волноводов с прямоугольным сечением, имеющим субволновые поперечные размеры, и расположенных на субволновом расстоянии от крайних наночастиц чувствительного элемента. Технический результат заключается в уменьшении размеров и повышении чувствительности сенсора. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области химии, в частности к методикам наноструктурирования и модификации свойств поверхности. Изобретение может быть использовано для изменения смачиваемости поверхности кремния путем изменения пористости поверхности, в том числе для получения гидрофильных или гидрофобных поверхностей на основе кристаллического кремния. Способ включает обработку поверхности кристаллического кремния электрохимическим травлением в растворе плавиковой кислоты концентрацией от 20% до 30% при подаче тока с поверхностной плотностью 750-1000 мА/см2 в течение 5-30 секунд для получения гидрофобного кремния или подаче тока с поверхностной плотностью не более 650 мА/см2 в течение 5-30 секунд для получения гидрофильного кремния. Способ позволяет одноэтапно получать поверхности с мультимодальной пористостью нано- и микромасштаба. 4 ил.

Изобретение относится к области физики, в частности к методикам модуляции интенсивности электромагнитного излучения видимого и ближнего ИК диапазонов посредством приложения магнитного поля. Способ модуляции света включает в себя создание магнитоплазмонного кристалла на основе периодически наноструктурированной диэлектрической матрицы, с пространственным периодом d, последующее напыление на нее слоев ферромагнитных и благородных металлов, а также диэлектриков, освещение магнитоплазмонного кристалла светом и приложение магнитного поля. Модуляция интенсивности ТМ-поляризованного отраженного света осуществляется с помощью периодически наноструктурированной пленки ферромагнитного металла толщиной h=50-200 нм. В качестве источника света используется ТМ-поляризованное электромагнитное излучение, падающее на поверхность магнитоплазмонного кристалла под углом, соответствующим возбуждению поверхностных плазмон-поляритонов. При этом переменное магнитное поле прикладывается в геометрии экваториального магнитооптического эффекта Керра. Технический результат - уменьшение толщины магнитооптического модулятора. 4 ил.

 


Наверх