Патенты автора Дыкман Владимир Захарович (RU)

Изобретение относится к области энергетики, в частности к установкам автономного электроснабжения на базе тепла различных природных сред путем прямой трансформации (преобразования) тепловой энергии этих сред в электрическую энергию. Сущность: устройство содержит трубку (1) термосифона или тепловую трубку (1), которая заполнена хладагентом с заданной температурой кипения. На одном конце трубки (1) закреплен нагреватель (2) в виде радиатора, охватывающего этот конец трубки. На другом конце трубки (1) закреплен, по крайней мере, один элемент Пельтье (4), у которого «горячий спай» непосредственно примыкает к этому концу трубки, а «холодный спай» примыкает к холодильнику (5) в виде радиатора. Нагреватель (2) находится в подледной воде с температурой T1, а холодильник (5) находится в атмосфере с температурой Т2. Термосифон используется только в случае, если T1>Т2, а тепловая трубка - при любых соотношениях перепадов Т1 и Т2. Технический результат заключается в реализации назначения. 1 ил.

Изобретение относится к техническим средствам изучения и освоения морей и океанов с использованием буксируемых подводных аппаратов, способных изменять траекторию своего движения по глубине, и предназначено для выполнения морских исследовательских работ. В первом варианте изобретения система содержит установленный на несущей линии буксируемый подводный носитель с прочным герметичным и снабженным несущим крылом корпусом обтекаемой формы с измерителями, а также устройство заглубления, устройство управления положением носителя, блок питания измерителей и размещенное на судне устройство приема информации. Устройство заглубления выполнено в виде обтекаемого тела заданного веса и заданной формы, закрепленного на нижнем конце кабель-троса, вытравленного на заданную глубину. Носитель снабжен роликовыми опорами, выполненными с возможностью движения носителя под действием набегающего потока по кабель-тросу, и тормозом. Несущее крыло закреплено с возможностью изменения угла атаки, а устройство управления положением носителя выполнено в виде устройства управления углом атаки несущего крыла, которое содержит блок питания и размещено в корпусе. Второй вариант изобретения отличается от первого тем, что в качестве несущей линии используется трос, а носитель представляет собой не только автоматически управляемое, но и автономное устройство, за счет того, что устройство управления углом атаки несущего крыла и блок научной аппаратуры снабжены собственными, автономными, блоками питания, а устройство приема информации размещено в корпусе носителя. Достигается повышение информативности, а также улучшение эксплуатационных характеристик системы - повышение ее надежности. 2 н.п. ф-лы, 2 ил.

Изобретение может быть использовано океанологических и инженерно-гидрогеологических исследованиях в придонном слое моря в зоне интенсивного волнения и обрушения волн. Устройство содержит несущую раму 1 в виде закрепленной распределенным грузом 2 на дне моря прочной выполненной из прутка пирамиды, внутри которой вертикально установлен пробозаборник 3 в виде шланга. Выходной конец пробозаборника 3 связан с закрепленным на одной из опор катушки 8 насосом 10, выходной патрубок которого соединен шлангом 11 подачи взвеси с береговой станцией приема и обработки проб. Насос 10 подключен к береговому блоку дистанционного питания и управления. На входном конце пробозаборника 3 соосно его входному отверстию жестко с герметизацией закреплена закрытая цилиндрическая полая всасывающая головка 5, боковая поверхность которой выполнена с заборными отверстиями 6 и снаружи защищена фильтром 7. Входной конец пробозаборника 3 размещен в вертикальной направляющей 4, которая жестко закреплена внутри несущей рамы 1 и выполнена в виде жестко соединенных между собой прутков поперечного сечения. Входной конец пробозаборника 3 установлен в направляющей 4 с возможность вертикального скольжения в ней его всасывающей головки 5. Наружный диаметр всасывающей головки 5 превышает наружный диаметр пробозаборника 3. Отверстия на боковой поверхности головки 5 имеют одинаковую форму и одинаковые геометрические размеры, выполнены в одной плоскости, перпендикулярной её оси, и расположены радиально относительно этой оси и симметрично относительно друг друга. Фильтр 7 выполнен в виде неплотно прилетающего к наружной боковой поверхности вертикальной направляющей 4 чулка из мелкоячеистой сети, самоочищающегося от водорослей под действием волн. В верней части несущей рамы 1 жестко закреплена снабженная двигателем 9 катушка 8, на рабочей поверхности которой уложена заданная часть пробозаборника 3. Рабочая поверхность катушки 8 выполнена в виде винтовой направляющей. Двигатель 9 катушки 8 подключен к береговому блоку дистанционного питания и управления. Технический результат изобретения - повышение точности и достоверности определения качественного и количественного состава проб взвеси, вертикального распределения взвеси за счет обеспечения возможности отбора пробы в любой точке вертикали в пределах заданного цикла и минимизации возмущений, вносимых самой конструкцией в исследуемое пространство. 2 з.п. ф-лы, 1 ил.

Изобретение относится к технике океанографических и гидролого-геологических исследований прибрежных районов шельфа, предназначено для отбора проб минеральной взвеси с различных горизонтов придонного слоя моря в зоне больших скоростей турбулентного потока для получения репрезентативных данных о составе и концентрации взвеси и ее распределении по вертикали. Устройство содержит раму 1, на которой закреплены трубчатые пробозаборники. Рама 1 выполнена в виде закрепленной грузами на дне моря в зоне интенсивного волнения и обрушения волн прочной выполненной из прутка пирамиды, преимущественно трехгранной. Внутри жестко закреплен узел пробозаборников, выполненный в виде объединенного пучка вертикально расположенных труб 4 одинакового проходного сечения. На нижних концах труб 4 жестко закреплены расположенные на соответствующих заданных горизонтах моря всасывающие головки в виде полых жестких горизонтальных дисков 5 одинакового диаметра, которые расположены на оси объединенного пучка труб и имеют одинаковый заданный, соответствующий размеру проходного сечения труб, размер высоты их полостей. Диаметр дисков 5 превышает размер поперечного сечения объединенного пучка труб. Боковая поверхность каждого диска 5 выполнена в виде сетки с заданной пропускной способностью и снаружи снабжена фильтром 6, преимущественно выполненным в виде мелкоячеистой сети, неплотно прилегающей к боковой поверхности диска. Каждый диск 5 закреплен на соответствующей трубе 4 так, что ее входное отверстие с герметизацией сообщается с полостью диска через выполненное в его верхнем основании отверстие. В верхнем и нижнем основаниях каждого диска 5, кроме нижнего диска, выполнены одна или более пар соосных отверстий, через которые пропущены и в которых с герметизацией жестко закреплены другие трубы объединенного пучка. Пространство между дисками занимают закрепленные соосно дискам цилиндрические обтекатели 7 одинакового заданного наружного диаметра. Преимущественно, наружный диаметр обтекателей 7 превышает диаметр дисков 5. Выходное отверстие каждой трубы 4 присоединено к соответствующему входному отверстию снабженного приводом 8 многопозиционного крана 9, выходное отверстие которого присоединено шлангом 10 к насосу 11, выходной патрубок которого соединен с береговой станцией приема и обработки проб. Насос 11 закреплен на одной из граней рамы 1 и подключен к береговому блоку дистанционного питания и управления, к которому подключен привод многопозиционного крана 9. Обеспечивается повышение достоверности определения качественного и количественного состава проб взвеси в придонном слое шельфовой зоны моря в реальном времени, ее вертикального распределения, что необходимо для оценки потоков переносимой взвеси, влияющих на изменение береговой линии и рельефа дна. 3 з.п. ф-лы, 2 ил.

Изобретение относится к измерителям скорости и направления течений в морях и пресноводных водоемах на различных глубинах в составе автономных буйковых станций и других неподвижных (малоподвижных) носителей. Электромагнитный измеритель течений содержит немагнитный корпус, в котором установлен магнитный блок из двух пар постоянных магнитов с чередующейся полярностью, на полюсах магнитов закреплены наконечники из магнитомягкого материала, несколько пар электродов, закрепленных на корпусе, при этом содержит расположенную на заданном расстоянии от магнитов магнитного блока катушку индуктивности, ось которой параллельна оси вращения магнитного блока и лежит на окружности, образованной вращением вокруг оси магнитного блока геометрических осей его магнитов, и которая подключена к блоку электроники, обеспечивающему возвратно-вращательное движение магнитного блока с заданной частотой на заданный угол, измеритель содержит установленную на заданном расстоянии от магнитов магнитного блока по крайней мере одну пару дополнительных постоянных магнитов, при этом каждая пара расположена перпендикулярно оси вращения магнитного блока и один из магнитов каждой пары установлен в корпусе неподвижно, а другой - на оси вращения магнитного блока. Технический результат - увеличение длительности автономной работы и увеличение ресурса работы измерителя с сохранением улучшенных метрологических и эксплуатационных характеристик. 2 з.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике. Особенностью заявленного электромагнитного измерителя компонент вектора скорости электропроводной жидкости является то, что магниты ориентированы так, что магнитное поле направлено вдоль оси вращения магнитного блока, на каждом из магнитов на его полюсах закреплены наконечники из магнитного материала, свободные концы которых расположены на минимально возможном расстоянии, исходя из прочностных характеристик конструкции, от рабочих поверхностей электродов, которые находятся посередине длины корпуса в зоне концентрации магнитного поля, при этом корпус имеет удлиненную форму с соотношением длины и диаметра, обеспечивающим прочность корпуса во время океанографических измерений. Техническим результатом является уменьшение погрешностей измерений компонент вектора скорости течения, вызываемых динамикой обтекания корпуса, и увеличение чувствительности. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, преимущественно предназначено для океанографических исследований прибрежных районов шельфа в зоне больших средних и мгновенных скоростей турбулентного потока и может быть использовано, в том числе, для решения задач прибрежной инженерии и контроля экологического состояния открытых водоемов. Способ непрерывного определения концентрации минеральной взвеси в придонном слое моря в зоне интенсивного волнения заключается в том, что используют измерительное устройство, содержащее, по крайней мере, один, установленный на заданном горизонте моря пробоотборник взвеси в виде накопительного стакана, снабженного датчиком. С помощью датчика определяют количество взвеси в накопительном стакане. Производят обработку выходных сигналов датчика и по ее результатам определяют производную по времени количества накопленной взвеси, пропорциональную концентрации взвеси. Полученные текущие значения концентрации взвеси или регистрируют в долговременной памяти измерительного устройства, или передают по линии связи в реальном масштабе времени. По окончании цикла измерений извлекают из пробоотборника накопленную взвесь и подвергают ее всестороннему лабораторному анализу: во-первых, определяют значения количества накопленной взвеси и с использованием этих значений корректируют данные, полученные в результате цикла измерений; во-вторых, определяют другие, интересующие исследователя характеристики взвеси. Причем пробоотборник, преимущественно, выполнен в виде цилиндрического стакана, снабженного поршнем, и имеет шкалу. Техническим результатом является определение с высокой точностью концентрации минеральной взвеси в придонном слое моря в зоне интенсивного волнения, и получение информации в реальном масштабе времени, возможность определения вертикального распределения концентрации взвеси, а также возможность разделить отобранную пробу взвеси на отдельные фрагменты и привязать их ко времени измерений. 1 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике, а именно к электромагнитным устройствам для измерения скорости потока электропроводной жидкости и основывается на явлении электромагнитной индукции: при движении проводника в магнитном поле в нем индуцируется электродвижущая сила Е, пропорциональная магнитной индукции В и скорости V проводника, которая действует в направлении, перпендикулярном к движению жидкости и магнитному полю. Изобретение может быть использовано для измерения пульсаций трех ортогональных составляющих вектора скорости течения, сильно изменяющегося по направлению и скорости, при проведении гидрофизических и гидродинамических исследований. Технические результаты изобретения - уменьшение погрешности при измерении малых пульсаций вектора скорости потока и увеличение пространственной разрешающей способности устройства за счет создания концентрации магнитного поля в зонах расположения измерительных электродов, а также за счет устранения в' зонах контакта измерительных электродов с исследуемой жидкостью эффекта "отсутствия движения" этой жидкости. Сущность: устройство для измерения пульсаций скорости потока электропроводной жидкости содержит первичный преобразователь со сферическим обтекателем (8) из электроизоляционного материала, в котором вмонтирована магнитная система. Магнитная система содержит четыре постоянных магнита (2) прямоугольного сечения, у которых поверхности полюсов сопряжены с поверхностями полюсных наконечников (3). Магниты (2) установлены попарно в вертикальных ортогональных плоскостях симметрично относительно вертикальной оси сферического обтекателя (8), одноименными полюсами друг к другу. Электродная система содержит восемь измерительных электродов (5), установленных в двух вертикальных ортогональных плоскостях в заполненных электроизоляционным материалом зазорах (4) магнитной системы под углом 45° к ее горизонтальной плоскости. Электроды (5) подключены попарно к входам вычитающих усилителей измерительного блока устройства. При этом магниты (2) закреплены на вертикальной немагнитной стойке (1), проходящей через центр сферического обтекателя (8), полюсные наконечники (3) выполнены плоскими, установлены на полюсах магнитов (2) и имеют выступы, образующие восемь отдельных зазоров (4), в которых установлены измерительные электроды (5) в виде стержней, у которых один торец выходит на поверхность сферического обтекателя (8), на которой соосно электродам (5) закреплены восемь шайб (9) с заданными размерами из электроизоляционного материала. 4 ил.

 


Наверх