Патенты автора Кузьмин Алексей Александрович (RU)

Изобретение относится к электротехнике, к силовому оборудованию компенсации емкостных токов замыкания на землю в электрических сетях среднего напряжения. Технический результат заключается в повышении компенсации емкостных токов, точности настройки контура нулевой последовательности сети, надежности и энергоэффективности, в снижении уровня высших гармонических составляющих в токе замыкания на землю. Реактор дугогасящий заземляющий с конденсаторным регулированием рабочего тока содержит обмотки, расположенные на стержнях стержневого или бронестержневого магнитопровода с немагнитными зазорами. Он снабжен регулируемыми нагрузочными элементами Сн и Rн, соединенными параллельно и подключенными к вторичной обмотке реактора. Его первичная обмотка подключена к нейтрали электрической сети, а вторичная обмотка установлена между частями первичной обмотки. 6 з.п. ф-лы, 7 ил.

Область использования относится к электротехнике, а именно: к устройствам, предназначенным для измерения емкостного тока замыкания на землю в электрических распределительных сетях 6-35 кВ. Сущность изобретения: способ определения емкостного тока замыкания на землю в электрических сетях с компенсированной нейтралью 6-35 кВ установленными в нейтрали дугогасящими реакторами (ДГР) регулированием тока компенсации изменением немагнитного зазора сердечника с неизвестными текущими параметрами настройки. Сущность заявленного решения заключается в том, что вычисление емкостного тока производится посредством измерения расстройки при двух значениях емкостного тока сети: соответствующей резонансной настройке ДГР и в режиме недекомпенсации с подключением параллельно с рабочей обмоткой или во вторичную его цепь конденсатора с известной величиной добавляемого им емкостного тока. Контроль расстройки контура нулевой последовательности (КНП) сети производится с использованием частот собственных колебаний КНП в области резонанса и с подключением в контур дополнительной электрической емкости, полученных путем воздействия на контур импульсного токового сигнала посредством одной из вторичных обмоток ДГР. Техническим результатом при реализации заявленного решения выступает снижение длительности проводимой процедуры измерений, повышение точности вычисления емкостного тока при малых энергетических показателях источника возмущения контура, не требует включения привода плунжера дугогасящего реактора в процессе измерений и повышает ресурс оборудования. 1 ил.

Изобретение относится к электротехнике и энергетике, в частности к ферромагнитным устройствам, управляемым изменением воздушного зазора. Реактор с регулируемым зазором содержит магнитопровод со средним стержнем, состоящим из двух подвижных, верхнего и нижнего, сердечников, боковых ярем, обмоток - основной, сигнальной и управления, механизм регулирования зазоров с приводом вала перемещения подвижных сердечников. Техническим результатом является снижение потерь электроэнергии в стержне магнитопровода от вихревых токов, уровня шумов и вибраций, возникающих при выпучивании магнитного потока в регулируемом единичным воздушном зазоре. Для решения этой задачи средний стержень магнитопровода выполнен с дополнительным промежуточным неподвижным сердечником, установленным между верхним и нижним подвижными сердечниками, который позволяет разделить требуемый регулируемый единичный зазор на две равные части, что обеспечивает снижение полей рассеивания и уровня выпучивания магнитного потока. 1 ил.

Использование: в области электротехники. Технический результат - повышение точности и качества компенсации. Устройство содержит трехфазную электрическую сеть, схему фиксации состояния фазных проводов трехфазной электрической сети, подсоединенную своими входами к соответствующим проводам трехфазной электрической сети, первый, второй и третий датчики фиксации гармонических искажений, подсоединенные своими соответствующими входами к соответствующим проводам трехфазной электрической сети, преобразователь частоты, присоединенный своим первым входом к изолированной нейтрали трехфазной электрической сети, датчик тока нулевой последовательности, подсоединенный одним своим выводом к первичной обмотке трансформатора к выходу преобразователя частоты и другим своим выводом к одному из выводов дросселя, подсоединенного другим своим выводом к корпусу заземления, и контроллер, подсоединенный своим первым входом к выходу схемы фиксации состояния фазных проводов трехфазной электрической сети, своим вторым, третьим и четвертым входами к соответствующим выходам датчиков фиксации гармонических искажений, своим пятым входом к выходу датчика тока нулевой последовательности, своим шестым входом к выходу узла ввода команд и своим выходом к второму входу преобразователя частоты. 1 ил.

Импульсно-периодический лазер на неодимовом стекле для накачки мощных титан-сапфировых усилителей включает в себя задающий генератор, предусилитель, систему формирования пучка, изолятор Фарадея, кеплеров телескоп, поляризатор, основной двухпроходный усилитель на стержневых активных элементах из неодимового стекла и удвоитель частоты. Основной двухпроходный усилитель включает в себя одну или несколько пар идентичных квантронов со стержневыми активными элементами из неодимового стекла, установленных последовательно по лучу и запасающих каждая не менее 200 Дж энергии за один импульс накачки, а также линзу, вращатель Фарадея и ВРМБ-кювету, излучение в которую фокусируется упомянутой линзой. Причем между стержневыми активными элементами квантронов внутри каждой пары установлены вращатели поляризации на 90 градусов. Технический результат - разработка импульсно-периодического лазера с энергией импульсов несколько сотен джоулей и частотой их повторения не менее 0,02 Гц для накачки титан-сапфирового мультипетаваттного комплекса. 4 з.п. ф-лы, 5 ил.

 


Наверх