Патенты автора Чулков Арсений Олегович (RU)

Изобретение относится к исследованию материалов, а именно, к неразрушающему контролю материалов и изделий активным тепловым методом и может быть использовано для сплошного автоматизированного контроля подповерхностных дефектов в крупногабаритных плоских изделиях, выполненных из композиционных материалов и сотовых структур и относящихся к авиационной, ракетной и космической отраслям промышленности. Сканирующий тепловизионный дефектоскоп содержит два шаговых двигателя, которые прикреплены к внутренней поверхности поперечины, соединяющей два лонжерона несущей П-образной рамы в ее передней части. На валах шаговых двигателей, пропущенных через отверстия в лонжеронах, закреплены ведущие колеса. На внешней стороне каждого из лонжеронов на равном расстоянии от ведущего колеса и друг от друга закреплены валы, на которые с помощью подшипников посажены натяжные ролики и ведомое колесо. Ведущие и ведомые колеса равных размеров снабжены выступами на их образующей и расположены на разных концах лонжеронов, причем на каждую пару ведущего и ведомого колес с натягом надет замкнутый армированный ремень, имеющий на его внутренней поверхности впадины так, что натяжные ролики, размещенные между ними, касаются внутренней поверхности ремня, внешняя поверхность которого соприкасается с поверхностью объекта контроля. К поперечине П-образной рамы прикреплен контроллер управления, к которому подключены шаговые двигатели. Сверху на лонжеронах закреплен кожух в виде усеченной пирамиды, на верхней поверхности которой установлен лазерный сканирующий измеритель расстояния с углом обзора в 360°. Внутри кожуха параллельно его верхней поверхности установлены направляющие, на которых закреплена оптическая камера, поле зрения которой направлено на поверхность объекта контроля. На направляющих с возможностью продольного перемещения по ним установлен тепловизор, поле зрения которого направлено вертикально вниз на поверхность объекта контроля. На внутренней боковой поверхности кожуха закреплен источник светодиодной подсветки, который соединен с контроллером управления. К поперечине П-образной рамы с помощью выступающих вперед кронштейнов прикреплен корпус-отражатель, внутри которого установлен трубчатый галогенный источник нагрева. На корпусе-отражателе закреплены вентиляторы принудительного охлаждения и блок управления нагревом, соединенные между собой. Тепловизор, оптическая камера, лазерный сканирующий измеритель расстояния, контроллер управления и блок управления нагревом соединены с компьютером. Технический результат - неразрушающий автоматизированный контроль подповерхностных дефектов в крупногабаритных плоских изделиях с высокой производительностью и достоверностью. 2 ил.

Изобретение относится к неразрушающему контролю скрытых дефектов в тепло- и  гидроизоляционных обшивках крупногабаритных цилиндрических изделий, относящихся к химической, нефтегазовой и ракетно-космической отраслям промышленности с использованием активного теплового метода. Способ заключается в непрерывном равномерном вращении объекта контроля вокруг своей продольной оси, одновременном нагреве его наружной поверхности нагревателем, расположенным вдоль образующей объекта контроля, и регистрации температурного поля наружной поверхности объекта контроля тепловизором, расположенным таким образом, что нагретая поверхность объекта контроля попадает в поле зрения тепловизора в заданный момент времени. Регистрируют температурные поля поверхности кольцевых зон с заданным перекрытием по длине окружности объекта контроля, причем сначала регистрируют температурные поля нечетных кольцевых зон, а затем четных кольцевых зон, перемещая нагреватель и тепловизор вдоль оси объекта контроля от предыдущей кольцевой зоны к следующей относительно переднего края объекта контроля на расстояние S = (n-1)×(L-h), где S – расстояние между передним краем полосы нагрева линейного трубчатого нагревателя и передним краем объекта контроля, м; n – порядковый номер кольцевой зоны от переднего края объекта контроля; L – длина полосы нагрева линейного трубчатого нагревателя, м; h – заданная величина перекрытия кольцевой зоны по длине объекта контроля, м. Последовательности полноформатных термограмм всех кольцевых зон сохраняют в компьютер, затем преобразуют их в последовательности панорамных изображений, обрабатывают и преобразуют в результирующую карту дефектов объекта контроля. Технический результат - повышение достоверности результатов контроля. 4 ил., 1 табл.

Изобретение относится к неразрушающему контролю скрытых дефектов в тепло- и гидроизоляционных обшивках крупногабаритных цилиндрических изделий, относящихся к химической, нефтегазовой и ракетно-космической отраслям промышленности с использованием активного теплового метода. Устройство для теплового неразрушающего контроля крупногабаритных цилиндрических изделий содержит устройство вращения контролируемого изделия, тепловизор, источник нагрева, подключенные к компьютеру и расположенные с наружной стороны контролируемого изделия. Источник нагрева содержит корпус-отражатель, в котором установлено n трубчатых электрических нагревателей, соединенных с блоком управления нагревом. Источник нагрева закреплен на роботизированном манипуляторе, установленном на линейных направляющих, параллельно которым на роликах размещено контролируемое изделие. К одному ролику подключен электрический привод, соединенный с блоком управления вращением. К корпусу-отражателю источника нагрева жестко прикреплен один конец первой штанги, к другому концу которой с помощью подвижного шарнира присоединен конец второй штанги, на другом конце которой закреплен тепловизор. К компьютеру подключены роботизированный манипулятор, блок управления нагревом, блок управления вращением и датчик положения, расположенный вблизи поверхности контролируемого изделия. Технический результат - повышение производительности контроля крупногабаритных изделий и обеспечение его автоматизации. 1 ил.

Изобретение относится к неразрушающему контролю скрытых дефектов в композиционных материалах и изделиях активным тепловым методом, используемых в авиакосмической, ракетной, атомной, машиностроительной и энергетической отраслях промышленности. Тепловой дефектоскоп содержит открытый корпус, внутри которого размещены тепловизор и два оптических источника нагрева, в отражателях которых установлены галогеновые лампы. К отражателям с помощью подвижных шарниров прикреплены металлические полые шторки. Внутренние стороны шторок выполнены из металла с коэффициентом отражения не ниже 0,7. Внешние стороны шторок, выполнены из металла с коэффициентом поглощения не ниже 0,9 и классом шероховатости не выше 3-го. Полости шторок заполнены теплоизоляционным негорючим материалом. Открытие и закрытие шторок обеспечивают соленоиды, сердечники которых прикреплены к подвижным шарнирам. Технический результат - повышение достоверности контроля за счет снижения уровня тепловых помех в контролируемой области. 1 ил.

Изобретение относится к области бесконтактного неразрушающего контроля и касается тепловизионной дефектоскопической системы. Система включает в себя тепловизионное устройство и светодиодный излучатель для нагрева контролируемого объекта, соединенные с блоком управления, а также два светочувствительных элемента. Светочувствительные элементы подключены к блоку управления через снабженный устройством сигнализации блок преобразования сигнала. Первый светочувствительный элемент находится в зоне расположения тепловизионного устройства, а второй светочувствительный элемент установлен у поверхности контролируемого объекта для регистрации падающего излучения светодиодного излучателя. Технический результат заключается в обеспечении автоматизации процедуры и повышении достоверности результатов контроля. 2 ил.

Изобретение относится к фармацевтической промышленности, а именно к способу получения порошков из пантов оленей. Способ получения порошка из пантов оленей, в котором куски пантов погружают в жидкий азот между размещенными в жидком азоте высоковольтным и низковольтным электродами, создающими электрические разряды, разрушая находящиеся между ними куски пантов и одновременно осуществляя циркуляцию жидкого азота, при определенных условиях, при этом высота загрузки кусков пантов в рабочую камеру превышает межэлектродное расстояние в 10-14 раз, энергию разряда рассчитывают по формуле. Вышеописанный способ позволяет снизить энергозатраты на процесс разрушения кусков пантов оленей, а также позволяет получить чистый порошок без примесей металла. 2 ил., 3 табл., 1 пр.

Изобретение относится к способу бесконтактного одностороннего активного теплового неразрушающего контроля материалов и может быть использовано для проведения теплового неразрушающего контроля изделий в авиакосмической, машиностроительной и энергетической промышленности. Способ бесконтактного одностороннего активного теплового неразрушающего контроля включает нагрев контролируемого образца источником оптического излучения и одновременную регистрацию температуры поверхности контролируемого образца тепловизором. Причем для обеспечения автоматизации процесса контроля однотипных изделий в зону нагрева источником оптического излучения вместе с контролируемым образцом размещают эталонный образец. Последовательность инфракрасных термограмм, записанных в процессе контроля, обрабатывают методом корреляционного анализа. Технический результат - обеспечение автоматизации процесса неразрушающего контроля. 1 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для активного одностороннего теплового контроля металлических, композиционных и др. материалов. Тепловизионный дефектоскоп содержит оптический нагреватель для тепловой стимуляции объекта контроля, тепловизор, компьютер, поворотный привод, поворотное зеркало, изготовленное из плоского теплоизоляционного основания и двух полированных металлических пластин, например, из алюминия или меди, закрепленных по обе стороны от теплоизоляционного основания. В заявленном устройстве используется поворотное зеркало, которое в период нагрева объекта контроля устанавливается под углом наклона, равным +45°, между нормалью к поверхности поворотного зеркала и нормалью к поверхности объекта контроля и под углом наклона, равным -45°, в период регистрации температурного поля объекта контроля тепловизором, что обеспечивает максимально возможную плотность мощности нагрева и отсутствие геометрических искажений изображения объекта контроля. Технический результат - повышение точности получаемых данных. 2 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано при проведении наружной тепловизионной съемки для диагностики состояния строительных сооружений и энергетических объектов. Тепловизионная система для проведения наружной тепловизионной съемки содержит блок обработки - микропроцессорный контроллер, блок памяти и блок визуализации, представляющие собой компьютер, тепловизор и устройство для определения температурных параметров окружающей среды, состоящее из двух пластин, выполненных из материалов с разными коэффициентами отражения и поглощения. Повышение точности измерения температурных значений объекта контроля достигается путем их корректировки в соответствии с измеренными температурными значениями окружающей среды, регистрируемыми двумя пластинами и принимаемыми как эталонные. Технический результат - повышение точности измерения температурных значений объекта контроля. 1 ил.

Изобретение относится к бесконтактным методам исследований теплофизических характеристик твердых тел и может быть использовано для исследований теплофизических характеристик изделий, используемых в авиакосмической, машиностроительной и энергетической промышленности. Устройство для бесконтактного определения коэффициента температуропроводности твердых тел содержит плоский оптический нагреватель и тепловизор, подключенные к компьютеру, оптически непрозрачную маску для формирования пространственного поля нагрева. Устройство также дополнительно содержит оптический объектив, предназначенный для фокусирования теплового излучения плоского оптического нагревателя и оптически непрозрачную шторку, позволяющую открывать и закрывать тепловое излучение плоского оптического нагревателя в определенные моменты времени. Технический результат - повышение точности бесконтактного определения коэффициента температуропроводности твердых тел. 1 ил.

 


Наверх